RESEARCH ARTICLE
Dynamic Modelling of Heart Rate Response Under Different Exercise Intensity
Steven W Su1, 2, 3, Weidong Chen*, 1, Dongdong Liu1, Yi Fang1, Weijun Kuang1, Xiaoxiang Yu1, Tian Guo1, Branko G Celler3, Hung T Nguyen2
Article Information
Identifiers and Pagination:
Year: 2010Volume: 4
First Page: 81
Last Page: 85
Publisher Id: TOMINFOJ-4-81
DOI: 10.2174/1874431101004020081
Article History:
Received Date: 3/10/2009Revision Received Date: 5/11/2009
Acceptance Date: 15/11/2009
Electronic publication date: 28/5/2010
Collection year: 2010
open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
Abstract
Heart rate is one of the major indications of human cardiovascular response to exercises. This study investigates human heart rate response dynamics to moderate exercise. A healthy male subject has been asked to walk on a motorised treadmill under a predefined exercise protocol. ECG, body movements, and oxygen saturation (SpO2) have been reliably monitored and recorded by using non-invasive portable sensors. To reduce heart rate variation caused by the influence of various internal or external factors, the designed step response protocol has been repeated three times. Experimental results show that both steady state gain and time constant of heart rate response are not invariant when walking speed is faster than 3 miles/hour, and time constant of offset exercise is noticeably longer than that of onset exercise.