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Abstract: Background: Many insulin sensitivity (SI) tests identify a sensitivity metric that is proportional to the total 

available insulin and measured glucose disposal despite general acceptance that insulin action is saturable. Accounting for 

insulin action saturation may aid inter-participant and/or inter-test comparisons of insulin efficiency, and model-based 

glycaemic regulation. 

Method: Eighteen subjects participated in 46 dynamic insulin sensitivity tests (DIST, low-dose 40-50 minute insulin-

modified IVGTT). The data was used to identify and compare SI metrics from three models: a proportional model (SIL), a 

saturable model (SIS and Q50) and a model similar to the Minimal Model (SG and SIG). The three models are compared 

using inter-trial parameter repeatability, and fit to data. 

Results: The single variable proportional model produced the metric with least intra-subject variation: 13.8% vs 

40.1%/55.6%, (SIS/I50) for the saturable model and 15.8%/88.2% (SIG/SG) for the third model. The average plasma insulin 

concentration at half maximum action (I50) was 139.3 mU·L
-1

, which is comparable to studies which use more robust 

stepped EIC protocols. 

Conclusions: The saturation model and method presented enables a reasonable estimation of an overall patient-specific 

saturation threshold, which is a unique result for a test of such low dose and duration. The detection of previously 

published population trends and significant bias above noise suggests that the model and method successfully detects 

actual saturation signals. Furthermore, the saturation model allowed closer fits to the clinical data than the other models, 

and the saturation parameter showed a moderate distinction between NGT and IFG-T2DM subgroups. However, the 

proposed model did not provide metrics of sufficient resolution to enable confidence in the method for either SI metric 

comparisons across dynamic tests or for glycamic control. 

Keywords: Insulin sensitivity, metabolic testing, physiological modelling, parameter identification. 

INTRODUCTION 

 Although it is generally agreed that some saturable 
insulin action dynamics occur during most insulin sensitivity 
(SI) tests [1-3], the identification of these effects is often 
crudely handled or ignored [4]. This choice can be attributed 
to the assumption that saturation effects are not often 
encountered during the comparatively low insulin 
concentrations induced during frequently sampled 
intravenous insulin tolerance tests (FS-IVGTT). Similarly, in 
hyper-insulinaemic euglycaemic clamps (EIC) the very large 
insulin doses lead to saturation [2, 3, 5, 6] but saturation 
effects are still ignored, creating difficulty in comparing 
results across protocols or EIC insulin doses. 

 It is important to understand insulin action saturation 
effects when testing for SI, or when adjusting insulin therapy 
in glycaemic control [7-9]. Commonly used diagnostic tests  
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that do not use a patient specific dosing protocol, such as the 
two-hour oral glucose tolerance test or dynamic insulin 
sensitivity test (DIST) [10-12], may be affected, at least in 
some cases, by saturation. In particular, differing patient 
specific volumes of distribution will cause inter-subject 
variation in concentration for the same dose, and thus, the 
insulin efficiency may not be measured equally across 
subjects leading to greater error in these critical values. For 
example, successive stepped clamp tests with varying 
glucose or insulin concentrations have yielded significantly 
different outcome insulin sensitivity metrics for the same 
individual [5, 6]. Glycaemic regulation may also be 
improved by understanding insulin saturation, as simple 
assumptions of unsaturated, proportional action may not be 
appropriate with very insulin resistant individuals [13, 14]. 

 Fig. (1) shows a typical response curve for the action of 
drugs or hormones as a function of concentration. The linear 
response line shows the gradient at the theoretical zero 
concentration point and measures the infinitesimal increase 
in action caused by an infinitesimal increase in concentration 
from zero. The saturation line shows the theoretical 
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maximum action line. The action will asymptotically 
approach this line as concentration increases and significant 
saturation effects become apparent. 

 A typical EIC protocol with a single insulin infusion rate 
will define a single point on a subject-specific saturation 
curve. Although equivalence should be given to results along 
the same saturation curve, it is assumed that equivalence lies 
on a straight line between this point and the origin. Hence 
comparing EIC values from differing dosing regimens loses 
value. Models used during SI identification for dynamic tests 
frequently have linear insulin-dependent terms [11, 15, 16]. 
Such terms could be represented as linear lines from the 
origin, with higher sensitivity represented with steeper 
gradients, and insulin action increasing with concentration 
with no diminishing returns. 

 To define saturation effects, the glucose disposal at a 
series of insulin concentrations must be observed. Previous 
studies into the saturation of insulin action have used either 
stepped or multiple EIC tests [2, 6, 17, 18]. The stepped EIC 
is a long protocol wherein the insulin infusion rate is 
sequentially changed in a stepwise fashion, usually at 2 
hourly intervals for 6-8 hours clamping patients at each 
steady-state plasma insulin concentration. Studies that used 
multiple tests have required subjects to have multiple EIC 
tests on separate days with differing insulin infusion rates. In 
both cases, increasing insulin doses resulted in decreasing 
estimates of SI for a given subject. 

 This article presents a method for the identification of a 
patient-specific insulin concentration at half maximal action 
(I50) and the theoretical zero insulin gradient (SIS) of glucose 
disposal (as a function of glucose availability). Contrary to 
previously presented studies, the saturation parameters will 
be identified using a single dynamic test. Hence, the method 
presented, if successful, offers the advantages of both 

reduced testing and reduced (single) test intensity to 
determine an important patient-specific value. 

METHOD 

Participants 

 Participants were recruited under informed consent from 
the Canterbury and Otago regions of New Zealand to take 
part in the pilot study of the DIST test [10, 11]. Participant 
demographics are detailed in Lotz [11]. A total of 18 
participants were recruited who represented a range of 
physiological conditions (age, fitness level and diabetic 
state) and 46 DIST trials were completed. Study approval 
was obtained from the Upper South A Regional Ethics 
Committee for this study. 

DIST Test Protocol 

 Participants reported to the place of testing in the 
morning after an overnight fast. All participants signed 
informed consent prior to their first test. A cannula was 
placed in the ante-cubital fossa from which blood was 
sampled at t = 0, 10, 15, 20, 25, 30, 35, 40 and 50 minutes 
and boluses of glucose (50% dextrose) and insulin (actrapid) 
were administered after the t = 10 and 20 minute samples 
respectively. Testing was completed as part of the pilot 
investigation of the DIST test so the dosing schedule was 
varied by design. Participants either received a low dose (5g 
glucose and 0.5U insulin), medium dose (10g -1U), or high 
dose (20g - 2U) test. Those participants that completed three 
tests repeated one of the doses. Table 1 summarises the 18 
participant’s data and defines the NGT (individuals with 
normal glucose tolerance), and T2DM-IFG (individuals with 
type 2 diabetes or impaired fasting glucose) subgroups. 
Impaired glucose tolerance could not be diagnosed with the 
data available. However, impaired fasting glucose can be 
identified with the basal sample of the DIST data. 

 

Fig. (1). Typical response curve for any typical saturative drug or hormone. The graphs use proportional and logarithmic x-axis for the same 

response (linear gradient of 1 and saturation maximum of 1). 



The Identification of Insulin Saturation Effects The Open Medical Informatics Journal, 2010, Volume 4    143 

Table 1. Summarised Participant Details, Further Informa-

tion can be Seen in Lotz et al. [10] 

 

Test Dose  
Number  

(S, m/f) 

BMI  

(kg/m
2
, SD) 

Low Medium High 

NGT 14 (5/9) 27.0 (6.5) 7 24 5 

T2DM-IFG 4 (1/3) 31.2 (4.1) 4 4 2 

 

Physiological Model 

 A pharmaco-kinetic/pharmaco-dynamic model is used to 
identify patient-specific parameters from the test data. 
Equations 1-5 are used to identify a proportional SI, as 
determined by Lotz et al. [10, 11]. 

C-Peptide Pharmaco-kinetics: 

dC

dt
= k2Y (k1 + k3 )C + Uen(t)           (1) 

dY

dt
= k1C k2Y             (2) 

Insulin Pharmaco-Kinetics 

dI

dt
= nK I

nL I

1+ I I

nI
Vp
(I Q) + (1 xL )Uen(t) +

Uex

Vp
  (3) 

dQ

dt
=
nI
Vq
(I Q) nCQ            (4) 

Glucose-Insulin Pharmaco-Dynamics 

dG

dt
= pgu (G Gb ) SIL (GQ GbQb ) +

P

VgL
        (5) 

where: k1, k2, k3, nK, nL, nI, and nC are rate parameters (min
-1

 

or L·min
-1

); I  is the saturation coefficient of liver clearance 

(L·mU
-1

); C and Y are plasma and interstitial compartment 

C-peptide concentrations (pmol·L
-1

); Uen(t) is the rate of 

endogenous insulin and (equi-molar) C-peptide production 

(mU·min
-1

·L
-1

);  is a conversion factor (6.94pmol/mU); I 

and Q are plasma and interstitial compartment insulin 

concentrations (mU·L
-1

); Uex and P are the insulin and 

glucose bolus inputs (mU and mmol); Vp and Vq are 

volumes of distribution (L); xL is the fractional first pass 

liver extraction (%); G is the glucose concentration in the 

plasma (mmol·L
-1

); Gb and Qb are basal levels of the 

respective species; VgL is the volume of distribution of 

glucose (L); pgu is the non-insulin mediated glucose disposal 

rate (min-1); SIL is the proportional insulin sensitivity 

constant (L·mU
-1

·min
-1

) and the ‘b’ subscript denotes the 

basal concentration of the respective species. 

 To generate a saturation model, Equations 4 and 5 must 
be altered to incorporate appropriate terms. Equations 6 and 
7 show how Equations 4 and 5 have been altered to define 
and include saturation. To enable a consistent treatment of 
the saturation characteristics of both the insulin absorption to 
the cell and resultant glucose disposal, the denominators in 
Equations 6 and 7 must be identical.  

dQ

dt
=
nI
Vq
(I Q)

nCQ

1+Q /Q50

          (6) 

dG

dt
= pgu (G Gb )

SISGQ

1+Q /Q50

+
SISGbQb

1+Qb /Q50

+
P

VgS
       (7) 

where: Q50 is the insulin concentration in the interstitium at 
half maximal glucose disposal rate (mU·L

-1
); VgS is the 

volume of distribution of glucose when the saturable 
parameters are identified and SIS is the gradient of the 
saturation curve at the theoretical zero insulin position 
(L·mU

-1
·min

-1
). 

 In addition to these models, the saturable model will be 
evaluated against a variation of the Minimal Model, which is 
frequently used for SI identification in similar tests [4, 15, 
16]. Many model-based methods for determining SI, such as 
the Minimal Model, for dynamic tests utilise a glucose 
dependant disposal term (SG) as a free variable [16]. 
However, the Minimal Model typically does not model the 
insulin pharmaco-kinetics in a directly physiological way, 
particularly in the plasma. Hence, in this study, Equations 1-
4 are used to provide the insulin pharmacokinetics for this 
model. This choice enables a more accurate and fair 
comparison of SI metrics identified from the pharmaco-
dynamics modelled, since the kinetics are equivalent. 
Equation 8 is used to model the glucose pharmaco-dynamics 
for this last model, referred to as the SG free variable model, 
as it is not strictly the minimal model. 

 

 

G = SG(G Gb ) SIG (GQ GbQb ) +
P

VgG
        (8) 

where: SG is the identified rate of glucose dependant 
glucose disposal (min

-1
); VgG is the volume of distribution of 

glucose when the SG free variable parameters are identified 
and SIG is the proportional SI metric derived when SG is 
identified as a variable (L·mU

-1
·min

-1
) 

Identification Process 

 Insulin sensitivity (SI) metrics are identified for each test 
using the proportional approximation of Equation 5, the 
saturative expressions of Equations 6-7, and the SG free 
variable model of Equation 8. The first step toward 
identification of SI, is the deconvolution of the C-peptide 
data using Equations 1 and 2, and the parameters identified 
using the estimation process outlined in Van Cauter et al. 
[19]. This step produces an endogenous insulin production 
profile (Uen) that is required for all three models presented. 

 The nL, xL, VgL and SIL metrics of the proportional model 
(Equations 3-5) are identified using the iterative integral 
method [20, 21]. Due to the very high resolution needed to 
accurately compare the metrics, the number of iterations is 
increased from 5 to 25. Each iteration of the integral method 
uses species concentration profiles that have been re-
simulated using the parameters identified during the previous 
iteration. Integrating factors are used for re-simulations when 
the equations can be linearised (Equations 4, 5, 7 and 8), and 
quick converging Picard iterations are used other cases 
(Equations 3, 6) [22, 23]. Thus, highly accurate, patient-
specific parameters (nL, xL, VgL and SIL) and insulin and 
glucose concentration re-simulations are identified for the 
proportional model. 
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 The simple iterative integral method is not possible with 
the saturable variables of Equations 6 and 7 (SIS, Q50 and 
VgS), which are not mathematically separable. Thus, a one 
dimensional grid search method is used to identify the 
metrics that minimise the re-simulation 2-norm error to the 
measured insulin and glucose data. To ensure identification 
is targeted towards relevant concentrations, the reciprocal of 
Q50 ( Q, 1/Q50) is used. Six equally spaced Q values are 
defined on a range between 0 and 0.5 (L·mU

-1
). The range of 

0 to 0.5 represents a range of values from the proportional 
case (Q50= ) to an unrealistically low saturation threshold 
(Q50=2 mU·L

-1
). Each value is then used in the iterative 

integral method to identify nL, xL, VgS and SIS. The Q value 
that produces the lowest 2-norm error between insulin and 
glucose simulations and the measured clinical data is used as 
the centre point of a new search range. The new range is 
40% the span of the previous range, but still bounded by 0 
and 0.5. Eight such range reductions are iterated and an aQ 
value accurate to within 0.1% is identified. 

 To ensure an equivalent comparison of SI metrics, the SG 
free variable model uses the same pharmaco-kinetic model 
for insulin as the proportional model, and so the same nL and 
xL metrics and I(t) and Q(t) simulations are used to identify 
the sensitivity parameters. Equation 8 is separable in terms 
of the variables to be identified, and thus, the iterative 
integral method can be used. However, utilising both SG and 
SIG as free variables causes in-stability in identification [24, 
25]. Thus, 100 iterations of the iterative integral method are 
used and the rates of convergence of the SG, SIs and Vg 
parameters are slowed and stabilised by averaging the 
identified value and the values of the previous three 
iterations, defined: 

 Xi+1 = (Xi+1(identified ) + Xi + Xi 1 + Xi 2 ) / 4          (9) 

In Silico Verification of Identification Method 

 To ensure that the method for the identification of 
saturation parameters is, in fact, identifying meaningful 
coefficients, and not just fitting to noise, an in-silico analysis 
was completed. Five hundred virtual subjects were simulated 
with the following evenly distributed ranges: height 1.5-2.3 
(m), BMI 18-36 (kg/m

2
) and age 18-60 (yrs). A random SI 

value (2.5-30e
-4

L.mU
-1

.min
-1

) was assigned to each virtual 
participant and which allowed the a-posteriori parameter 
estimation defined in [21]. To mimic the in-accuracy of the 
a-posteriori parameter identification equations, the obtained 
values were randomised, (normally distributed with a CV of 
33% bound between a half and double the original value). 
The identified a-priori and a-posteriori parameters with 
Equations 3-5 allow simulation of insulin, and glucose 
concentration responses to the DIST test stimulus. Virtual 
samples were taken from the simulated concentration 
responses at the times defined by the DIST protocol and 
represented a clean, noise and saturation-free data set. 

 Normally distributed noise was added to each clean data 
set in accordance with reported assay errors (glucose CV: 
intra 2% inter 1%, and insulin CV: intra 3% inter 2%). Each 
set was used to identify SI using Equations 3-5 and then 
again using Equations 3, 6 and 7 with Q50 fixed at 10000 
mU.L

-1
 (using Equations 4-5 assumes no saturation threshold 

(Q50= )). The simulated glucose profiles were then 
compared to the measured data and the more accurate 

Equation set was recorded. The process is repeated 20 times 
per virtual participant with new noise added to the clean data 
set at each iteration. Thus 10000 virtual trials are tested. 

 If the small positive and zero saturation effect terms 
show equal accuracies across this in-silico analysis, but the 
analysis using the real clinical data shows a significant bias, 
it could be concluded that the proposed methods are 
capturing some effect, and not merely noise. Some studies 
use complex mathematical expressions and methods to 
define ambiguous or obscure parameters that are often 
merely functions of noise in the clinical data [26-28]. This 
analysis could show that the method presented is not doing 
this. Instead it tests whether, in the presence of noise over 
synthetic data, no effect (or bias in saturation value) is 
identified. 

Statistical Analysis 

 An indication of the accurate identification of saturation 
effects can be found by comparing the bias of the in-silico 
test to the bias found using the clinical data. If the in-silico 
analysis finds a positive saturation in approximately 50% of 
the cases it will show that the method does not pick up 
saturation effects when in-fact there is only noise. If the 
method finds a positive saturation in greater proportions with 
the real cohort, an observed effect can be confirmed. 

 The iterative integral method used to identify the variable 
parameters in each presented model drives the parameter 
identification by minimising the 2-norm error metric. Thus 
to best evaluate the applicability of the models, the data-
fitting accuracy was identified using the 2-norms of the 
difference between the measured and simulated insulin and 
glucose concentrations. For ease of comparison, the mean 2-
norm for each species and model is divided by the mean 2-
norm for the species from all models. Thus, for each model, 
a normalised data-fitting error metric is presented for both 
glucose and insulin simulations enabling a comparison of 
model performance at a species level. 

 Furthermore, the inter-test, intra-subject parameter 
variations are used to show the robustness of metrics of the 
three models. Equation 10 defines the intra-subject 
variations.  

Variability =
abs(X1..n X)

nX
(%)        (10) 

 The mean inter-subject plasma insulin level at 50% 
maximal action (I50) is presented to show how the derived 
metrics compare to the published metrics of stepped, and 
multiple clamp test investigations [2, 6, 17, 18]. Although 
glucose disposal is dependent on interstitial insulin, the 
corresponding plasma level is used to gain equivalence with 
the findings of previously published stepped clamp 
investigations. Equation 11 defines the equivalent plasma 
level at Q50 by utilising a steady state ratio of 0.5 between 
the plasma and interstitium [29-32].  

I50 = 2 Q50           (11) 

RESULTS 

 All tests achieved convergence for all identified 
parameters in all models. No re-simulated profiles were 
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divergent from the measured data. The 10000 virtual trial in-
silico analysis showed that the small positive saturation term 
out performs the linear assumption 49.79% of the time (in 
terms of fitting accuracy). In comparison, the real clinical 
data analysis showed that greater accuracy was achieved 
with a non-zero saturation term 73.9% of the time (p<0.002). 
Hence, the identification method was robust in the presence 
of noise and a false effect was not identified. 

 Table 2 shows the re-simulation accuracy and relative 
values of the respective terms and models, both as a whole 
study population and divided into diabetes diagnosis. Fig. (2) 
shows insulin action profiles from the three models for a 
typical NGT test participant. 

 The mean insulin concentration at half maximal action 
(I50) for the total population was found as 139.3 mU·L

-1
 (CV 

=130.5%). There were almost significant (p=0.092) 
differences between the NGT and T2D-IFG subgroups I50 
values, whereas the SIS values for these groups were 
indistinguishable. The SIL and SIG parameters showed a 
difference between these groups whereas the SG term 
showed no such contrast. Table 3 shows that the I50 values 
found in this analysis were within the wide range of 
previously published values that were either derived using 
multiple or stepped EIC protocols [2, 6, 17, 18]. 

 

Table 2. SI Metrics from the Proportional Model, the Proposed Saturative Model and the SG Free Variable Model 

 

Model Parameters 
Intra – Subject 

Variability 

Normalised 

Error I, G 

Total Mean 

(CV) 

NGT Mean 

(CV) 

IFG-T2DM 

Mean (CV) 
p-Value 

Proportional Model SIL * 13.8% 1.004 1.076 14.38* (61.5%) 16.66* (50.4%) 6.18* (76.2%) <0.001 

SIS * 40.1% 36.58* (151.6%) 38.57* (150.9%) 29.42* (157.3%) 0.65 
Saturation Model 

I50 † 55.6% 
0.991 0.928 

139.33† (130.5%) 106.67† (98.9%) 226.4† (131.3%) 0.092 

SIG * 15.8% 14.54* (62.1%) 16.91* (50.0%) 5.99* (82.8%) <0.001 
SG free var. Model 

SG ‡ 88.2% 
1.004 0.996 

68.10‡ (168.3%) 67.81‡ (184.6%) 69.12‡ (99.3%) 0.97 

All metrics are shown as the mean of the full study population metrics and coefficient of variations (CV) of those metrics. Equation 10 defines the intra-subject variation. The mean 

residual errors produced are derived by finding the mean error between the measured data and the re-simulated profiles for insulin and glucose. The p-values are derived with 
Student’s t-test between the NGT and IFG-T2DM subgroups (* e-4L·mU-1·min-1, † mU·L-1, ‡ e-4min-1). 

 

Fig. (2). The rate of change of available glucose as a function of the insulin concentration in the interstitium for the three models identified 

on the same data set. Note the curved shape of the saturation model captures the behaviour of Fig. (1, left). Furthermore the linear and SG 

free variable models almost overlay. 
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DISCUSSION 

 The novel methods presented in this article allow 
identification of saturation parameters from relatively low-
dose, 40-50 minute dynamic tests. However, the intra-subject 
repeatability of the derived metrics is not of sufficient 
resolution to promote the use of the method to identify a 
saturation threshold for an individual. The population trend 
of higher I50 values in the IFG-T2DM subgroup observed in 
this study has also been reported previously [2, 6, 17]. 

 The saturation model also produced, more accurate 
numerical data-fitting re-simulations than either the 
proportional model or the SG free variable model. This result 
indicates that the method was truly detecting small levels of 
saturation of insulin action for most participants. This 
outcome would match expectations given the relatively low 
dose data available for this study. 

 The improvement of insulin data fit was slight when 
considering the additional variable in Equation 6 (Q50). 
However, there was a significant improvement in the glucose 
data fit obtained using the saturation model. This would 
imply that the saturation effect is most evident in the glucose 
data. Furthermore the glucose model fit error showed the 
increased fit accuracy possible with the added model 
variables. However, the saturation variable (Q50) showed a 
significant further data fit advantage over the added variable 
of the SG free variable model. Thus implying the presence of 
saturation effects in the data and the suitability of the 
saturation model for analysing glucose data. 

 To date, studies that derive a parameter for saturation 
have used stepped clamp tests [2], multiple clamp tests [6], 
or multiple insulin-modified IVGTT tests at various insulin 
or glycaemic doses [3]. These tests are arduous in terms of 
clinical intensity and time. A typical three-step clamp 
protocol will take over six hours of patient and clinician 
time. Hence, most importantly, this study shows that 
saturation of insulin sensitivity identification is achievable 
with a single 40-50 minute test, albeit an identification with 
a potentially high inter-test variability. 

 The stepped clamp and multiple clamp studies found 
physiological I50 values for 100% of subjects. However, 
none of the studies provided an intra-subject repeatability 
analysis so these results cannot be put further into context. In 
addition, their much higher insulin doses, well into saturation 
ranges, provide better resolution to identify this parameter, 
but also carry increased risk to the participant and thus added 
clinical burden as well. 

 The potential reasons behind the poor repeatability of the 
proposed saturation model are the decreased robustness of 
the solver in the presence of assay error and physiological 
and assay noise (such as mixing) [11, 33]. Such noise 
provokes the interference issues frequently observed when 
deriving SG and SI with the minimal model [24, 25]. These 
issues would be exasperated by low insulin doses. 

 Both the saturation model of Equations 6-7 and the SG 
free variable model of Equation 8 utilise two free variables 
to model the glucose decay. Thus, some noise-generated 
parameter trade-off error is expected. These issues are 
exacerbated when the free variables in both the saturation 
and SG free variable models are coupled to the functions of 
glucose concentration. In simpler terms, while the iterative 
methods identify the values that minimise the least–square 
simulation error, the noise in the data causes identifiability 
issues for multiple free variables, even though the noise-free 
systems are theoretically identifiable [34]. 

 Table 2 shows that the saturable and SG free variable 
models produced a higher intra-subject parameter variability 
than the proportional model. This result is likely to be an 
artefact of the number of free variables used by the 
respective models. Indeed, it could be assumed that the 
saturable model produces results in accordance with what 
should be expected by models that utilise two free variables 
to model glucose decay in short duration dynamic tests. 

 The p-value between the in-silico analysis and the real 
data confirms that the reduction in error is not due entirely to 
noise fitting. However, the reduction in error could be 
attributed to the addition of a second free variable. Both the 
SG free variable and saturation models achieved a lower 
mean residual error than the proportional model. However, 
the reduction in error for the SG free variable model was 
smaller compared to the saturation model. Thus, it could be 
concluded that if a second variable is to be included and 
identified, it is more physiologically favourable to identify a 
saturation variable than the glucose dependant clearance rate 
(SG). 

 Improvements in assay techniques may reduce the level 
of noise in the data. Thus enabling the methods presented to 
more accurately and repeatably identify these parameters. 
However, it is likely that the physiological mixing effects 
that are present during this type of dynamic test will limit 
any potential improvements obtained by a more accurate 
assay. This issue would be further compounded by a 
relatively low sampling rate of 5-10 minutes in the DIST 
designed to reduce cost and patient/clinical burden [11]. 
However, it suggests that a modified test protocol with an 

Table 3. Mean I50 Metrics from a Number of Studies [2, 16-18] Showing the Dependence of Behaviour on Diabetic Progression 

 

Published Findings Total I50 Mean (N) NGT I50 Mean (N) IFG-T2DM I50 Mean (N) Protocol 

Current analysis 139 (33) 107 (23) 226 (10) Dynamic 

Natali et al. [2] 293 (7) 240 (4) 364 (3) Stepped EIC 

Laakso et al. [17] 99 (12) 56 (6) 142 (6) Stepped EIC 

Rizza et al. [18] - 55 (15) - Stepped EIC 

Kolterman et al. [6] 221 (20) 130 (7) 270 (13) Multiple EIC 

These values are compared to I50 identified with the saturable model. 



The Identification of Insulin Saturation Effects The Open Medical Informatics Journal, 2010, Volume 4    147 

increased sampling frequency, larger or repeated boluses 
may provide better insight or stability in results 

 Furthermore, the dosing levels of the DIST test were 
purposefully lower than those used by comparable tests to 
avoid significant saturation effects, while still allowing 
detection of a signal and physiological relevance. This low 
dose, acting as designed, will have partially hidden the 
saturation effect that this study attempted to measure. The 
average interstitial insulin concentration reached during the 
DIST tests (36.6 mU·L

-1
) was significantly below the 

average identified Q50 value. In contrast, most stepped clamp 
studies achieve plasma insulin concentrations significantly 
above I50. For example, Natali et al. [2] achieved an average 
plasma insulin concentration of 509 mU·L

-1
 with a 200 

mU·m
-2

·min
-1

 infusion and found an average I50 of 293 
mU·L

-1
. This research attempted to identify the saturation 

effect with data that generally lies toward the linear region of 
the saturation curve in Fig. (1). Hence a limitation in this 
study is the lack of higher dose data which was unavailable 
to better prove the concept. Thus, the proportional model is 
the most appropriate model to identify metrics from the 
DIST test. 

 A significant finding of this study is shown in the p-
values for SIS and Q in Table 2. There is virtually no 
difference between the mean SIS metrics for the two 
subgroups (p=0.65). However, there is an almost significant 
difference between the mean I50 metrics (p=0.092). 
Physiologically, this result may imply that most people have 
similar insulin efficiency or sensitivity at the receptor level 
once insulin has been activated by the cell or at very low 
concentrations, and observed differences could instead be 
caused by saturation dynamics. In particular, a lack of 
receptors may limit sensitivity, and not the binding rate to 
them. Thus, much of the differences observed in proportional 
SI metrics from other studies could be affected by these 
saturation dynamics at cellular and receptor level, 
particularly if dosing is not patient specific. This hypothesis 
offers an interesting and physiologically justified insight, but 
remains to be proven by a purpose driven test. 

 The mechanisms by which insulin action saturation 
occurs have not been confirmed. However, most studies 
which have investigated the matter have promoted either a 
transportation delay of insulin to the skeletal muscle amongst 
insulin resistant individuals [3, 32], a lower intensity or 
availability of insulin receptors at the cell [6], or both [17]. If 
the former were the case, significant saturation effects would 
be more prominent in dynamic than steady state tests. The 
latter would show similar results across protocols. To date no 
such intra-subject cross-over investigations have been 
undertaken. However, this study has shown similar findings 
to the previous clamp investigations, implying that some ‘at 
the cell’ effect is likely. 

 It can be concluded by the reduction in simulation error 
caused by the incorporation of the saturation parameter that 
the proportional model (Equations 3-5) does not fully 
capture some of the subtle variations of the test dynamics. 
However, it cannot be safely concluded from the analysis 
presented that it was only saturation effects that caused this 
error reduction. It is well known that endogenous glucose 
production (EGP) can become suppressed in the presence of 
elevated blood glucose and insulin concentrations [35-37]. 

Although it is assumed that these suppressions have a small 
effect [38], they may be of similar magnitude to the 
saturation effects detected in this study. In particular, 
Equations 5, 7 and 8 assume that basal insulin-dependant and 
non-insulin-dependent glucose clearance is equal and 
opposite to EGP (as it is in the basal state) for the duration of 
the test and is thus cancelled out of the equations. However, 
the suppression of EGP would result in the opposite effect to 
saturation; the observed rate of glucose decay would be 
greater than expected during a period of elevated insulin 
rather than lesser as occurs with the saturation model. Tracer 
glucose studies with a purpose-specific test would be 
required to further delineate this effect, but would also add 
significant clinical burden and ethical considerations. 

CONCLUSION 

 The novel techniques presented in this article allow a 
unique identification of a physiologically justifiable, 
saturation value trend from a single dynamic test at a 
population level. Despite the robust identification methods, 
the high intra-patient variability implies that significant 
development of the protocol is required before high accuracy 
in saturation parameter identification is possible from single 
dynamic tests at an individual level. Potential protocol 
improvements may include larger, and possibly, repeated 
boluses. The saturation model showed similar accuracy in 
terms of parameter variation to generally accepted two 
parameter models, and allowed better fits to the clinical data. 
However, despite the increased fitting accuracy of the 
saturation model, the single parameter proportional model is 
the most stable, and thus it should be used for individual 
tests. 

 The comparable sensitivity coefficients between IFG-
T2DM and NGT sub-groups with disparate saturation 
thresholds implies that an ‘at-the-cell’ effect is the rate 
limiting factor in glucose disposal. Thus an insulin action 
saturation threshold may be a significant governing factor of 
insulin resistance. 
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