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Abstract: Diagnostic test interpretation remains a challenge in clinical practice. Most physicians receive training in the 

use of Bayes’ rule, which specifies how the sensitivity and specificity of a test for a given disease combine with the pre-

test probability to quantify the change in disease probability incurred by a new test result. However, multiple studies 

demonstrate physicians’ deficiencies in probabilistic reasoning, especially with unexpected test results. Information 

theory, a branch of probability theory dealing explicitly with the quantification of uncertainty, has been proposed as an 

alternative framework for diagnostic test interpretation, but is even less familiar to physicians. We have previously 

addressed one key challenge in the practical application of Bayes theorem: the handling of uncertainty in the critical first 

step of estimating the pre-test probability of disease. This essay aims to present the essential concepts of information 

theory to physicians in an accessible manner, and to extend previous work regarding uncertainty in pre-test probability 

estimation by placing this type of uncertainty within a principled information theoretic framework. We address several 

obstacles hindering physicians’ application of information theoretic concepts to diagnostic test interpretation. These 

include issues of terminology (mathematical meanings of certain information theoretic terms differ from clinical or 

common parlance) as well as the underlying mathematical assumptions. Finally, we illustrate how, in information 

theoretic terms, one can understand the effect on diagnostic uncertainty of considering ranges instead of simple point 

estimates of pre-test probability. 
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INTRODUCTION 

 The interpretation of diagnostic test results has been 
extensively discussed in the literature, and every physician 
receives training in the use of sensitivity, specificity, and 
predictive value calculations. Although it is recognized that 
neither diseases nor test results are dichotomous in reality, 
the essentials of interpretation are best understood (and 
taught) using the classic “2x2” box, which assumes yes/no 
possibilities. Bayes’ theorem is a formalization of test 
interpretation that utilizes the pre-test disease probability 
(pre-TP) and a given test result (positive or negative), to 
determine a new disease probability aptly called the post-test 
probability (post-TP) [1-3]. Although some suggest that 
physicians are natural Bayesians [4], many reports highlight 
deficiencies in formal or explicit probabilistic reasoning, 
including physician estimation of pre-TP, and the 
interpretation of test results in the context of pre-TP, 
particularly when results are unexpected (such as a positive 
result in a patient with low disease probability) [5-11]. One 
way to explicitly quantify the amount of uncertainty and how 
that uncertainty changes when we receive new information 
in diagnostic testing involves the use of information theory, 
introduced in the pioneering work of Shannon in 1948 in the 
context of communication theory [12]. Benish and others 
have elaborated strategies for understanding diagnostic tests 
in this context, but the information theoretic perspective has 
not enjoyed wide dissemination or implementation [13-18]. 
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 Four potential hurdles need to be addressed in order for 
information theory to gain traction among medical 
practitioners: 1) information theory is not routinely taught in 
medical curricula, 2) published resources applying 
information theory to diagnostics often involve mathematics 
unfamiliar to physicians, 3) the terminology used in 
information theory has vernacular implications that may 
differ from the precise mathematical concepts to which they 
refer, and 4) like Bayes’ theorem, there is little readily 
available guidance for handling ranges or confidence 
intervals in pre-TP, which may be described better as a 
qualitative impression than a precise estimate. Here, we 
address the latter three hurdles by providing intuitive 
explanations of information theoretic concepts, by relating 
the language of information theory to clinical parlance, and 
by developing an information theoretic approach to consider 
pre-TP as a range (instead of a point estimate) [19]. In this 
manner, we hope to render the application of information 
theory more relevant and practical for diagnostic 
interpretation. 

TYPES OF UNCERTAINTY 

 “Uncertainty” has a variety of possible meanings that are 
context-specific, and various taxonomies of uncertainty have 
been described

1
. From the perspective of the physician’s 

background, sources of uncertainty may include knowledge 
base, training level, spectrum of experience, and so forth. In 
addition, the information conveyed by patients in the clinical 

                                                             
1Simon Parsons, Qualitative methods for reasoning under uncertainty, 2001, 

MIT Press. 



Information Theoretic Quantification of Diagnostic Uncertainty The Open Medical Informatics Journal, 2012, Volume 6    37 

history may contain uncertainty or ambiguity for any number 
of reasons. 

 From the perspective of diagnostic test interpretation, 

uncertainty can be understood in a more explicit manner. For 

example, if a physician estimates that a patient’s probability 

of disease is 20%, the diagnosis is, by definition, uncertain, 

because its probability is not zero or 100%. Mathematically, 

this uncertainty is modeled by casting the disease state as a 

random variable, D , which is assumed for simplicity to 

have one of two possible true values: D = 1  (“disease is 

present”) or D = 0  (“disease is absent”). Before testing, 

each of these two possibilities has an associated probability. 

Because we are interested clinically in the chance of disease, 

we speak particularly of probability of disease being present, 

known as the pre-TP, which is based on various clinical 

characteristics. Though it may appear at first cumbersome, it 

will be useful to introduce some additional formalism, to 

consider the pre-TP as a function. We thus specify a 

probability distribution function, g(d) , for each possible 

value d  of D : for the probability that the disease is present 

( D = 1) , we write g 1( ) = p , where p = the pre-TP, and for 

the probability that the disease is absent ( D = 0) , we write 

g 0( ) = 1 p . The advantages of this formalism will become 

apparent below when we introduce information theoretic 

concepts. 

 In addition, we can consider another level of uncertainty 

regarding the pre-TP: the pre-TP estimate itself is usually not 

precisely known, and thus the physician’s estimate may be 

captured better by a range of values, say, 20% ±5%. Thus, it 

may be appropriate to treat the pre-TP itself as a random 

variable, which we denote with a capital letter P . We may 

also specify the probability associated with each possible 

value of P  within the permitted range, expressed 

mathematically by specifying a function, f (p) , that 

describes the precise distribution of probability over the 

range, e.g. whether the distribution is uniform, peaked 

around a certain value, etc. This range and its associated 

probability distribution function describes our uncertainty in 

the pre-TP estimate, indicating one’s sense that the true 

probability of disease could be somewhere between 15% and 

25%, and how this probability is distributed over this range. 

In this paper, we consider uncertainty at both of these levels. 

We will also see below in the development of the 

information theoretic ideas how the concept of entropy 

relates to diagnostic uncertainty. 

THE BASICS OF BAYES: COMPARISON WITH THE 
2X2 BOX 

 Fig. (1) illustrates the classic simplification of diagnostic 
test interpretation central to teaching sensitivity, specificity 
and predictive value. In this framework, disease status is 
assumed to be dichotomous (positive or negative), with test 
results similarly dichotomized. This arrangement facilitates 
calculation of sensitivity, specificity, and predictive values. 
Although this may not capture the true clinical complexity 
(e.g. a range of severity of multiple levels of diagnostic test 
positivity), it is conceptually useful. The prevalence of 
disease, expressed as the ratio of patients with disease to all 

patients shown in the 2x2 box, strongly influences the 
predictive value calculations (but not the sensitivity and 
specificity calculations). 

 

Fig. (1). 2x2 box. Disease presence and test results can be 

simplified into binary choices, resulting in the familiar 2x2 box. 

Formulae for calculating sensitivity, specificity, and predictive 

value are shown. The disease prevalence is a population term, 

referring to the ratio of those with disease to all subjects tested. The 

analogous term for disease probability in an individual patient is the 

pre-TP. 

 The first step in probabilistic (“Bayesian”) interpretation 
of diagnostic tests is to identify the pre-TP of disease 
(analogous to the prevalence in the 2x2 box). The next step 
is to apply the likelihood ratio (LR) value corresponding to 
the test result. Every test has a positive LR (LR

(+)
) and a 

negative LR (LR
(-)

), both of which are calculated from the 
sensitivity and specificity of the test as shown in Fig. (1). 
The LR is used to adjust the disease probability (either by 
manual calculation, or by nomogram), to yield a post-TP that 
takes into account all of the relevant information. The 
resulting post-TP is identical to the predictive value of the 
test result calculated by the 2x2 box. Thus, the standard 2x2 
box and the Bayes nomogram are two ways to arrive at the 
same information regarding test result interpretation. 

 In the discussion that follows, we will repeatedly refer to 
a simple clinical example, the problem of screening and 
diagnosis of obstructive sleep apnea (OSA). This will 
illustrate the mathematical concepts and help place them into 
clinical context. 

INFORMATION THEORY: THE SURPRISAL 

 In this and subsequent sections, we explore how to 
quantify the information provided by diagnostic test results 
[13-16]. This exploration will necessitate a framework for 
handling uncertainty at the level of disease probability, and 
at the level of ranges instead of point estimates of disease 
probability. The first essential element in this framework is 
the information theoretic quantity called the “surprisal”. The 
term surprisal and its formula are based on the intuitive idea 
that the less likely an event is to occur, the more surprised 
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we will be if the event is observed. The surprisal is defined 
mathematically as 

S p( ) = log2 p  

where S is the surprisal and p is the probability of an event 
occurring. For reasons of convention and practicality [16], 
the logarithm is taken with base 2, yielding surprisal in units 
of “bits”. Fig. (2A) illustrates the relationship between 
surprisal and any given event probability. The surprisal is 
zero when one observes an event that had a probability of 
100%, and infinite if one could observe an event that had a 
probability of 0%. We will typically take this event to be the 
presence of a disease, but the event can also refer to the 
absence of a disease. Our surprise (in this mathematical 
sense) upon learning that the event actually occurred (e.g., 
after gold standard testing) is related to its probability of 
occurrence (before we learned that it actually occurred) by 
the surprisal function. In this equation, the probability p can 
refer to disease probability at any stage of the diagnostic 
workup; it does not specifically refer to the pre-TP or the 
post-TP. For the surprisal, the information theoretic 
definition maps intuitively to clinical parlance: if our clinical 
suspicion of OSA in a given patient were low (e.g. because 
they were young, not obese and not known to snore), we 
would be surprised to eventually learn that the patient had 
OSA (and if our suspicion were high based on a different 
clinical presentation, we would be much less surprised). 

 

Fig. (2). Surprisal and entropy functions. (A) The surprisal 

function is shown across the probability range from 0 to 1. (B) The 

binary entropy function for dichotomous disease status is shown 

across the probability range from 0 to 1. The maximal entropy 

occurs at p = 0.5 (dotted line). 

INFORMATION THEORY: ENTROPY 

 We next build upon the concept of surprisal to introduce 
the concept of entropy and its relationship to uncertainty. 
Entropy is defined mathematically as the “expected value” of 
the surprisal, which means the amount on average (over 
many observations) one will be surprised with regard to an 
event that may or may not occur. An important feature here, 
which we will revisit below, is that entropy considers the 
weighted average of possible outcomes. Thus, the 
perspective provided by entropy is most meaningful in 
describing situations before a diagnostic outcome is known, 
rather than after. This critical point will help translate the 
concept of entropy into the clinical domain of diagnostic test 
interpretation, which deals of course with observed test 
results in individual patients. 

 In the simplified framework of the 2x2 box, we are 

considering only two potential outcomes for health status: 

disease present (D=1) versus disease absent (D=0), with 

probabilities g 1( ) = p , and g 0( ) = 1 p , where p is the pre-

TP of disease. The entropy of disease status, denoted as 

H (D) , is described in this limited two-outcome case by a 

simple formula known as the binary entropy function, h(p) . 

The binary entropy formula is as follows: 

H D( ) = h p( ) = p log2 p 1 p( ) log2 (1 p)  

 Entropy quantifies uncertainty about disease status by 

considering the average amount of surprise one can expect to 

have upon learning whether the disease is present or absent, 

weighted by the probability of each of these possible 

outcomes. In the above equation, each surprisal term in the 

average, S p( ) = log2 p  and S 1 p( ) = log2 (1 p) , is 

weighted by its probability (p and 1-p, respectively). Like 

the surprisal, entropy is measured in units of bits. 

 If the pre-TP of OSA were 20%, the surprise one would 
have upon ultimately learning that OSA is in fact present by 
gold standard polysomnography (PSG) is given by the 
surprisal –log2(0.2) = 2.32 bits, while the surprise one would 
have if OSA turned out to be absent would be much less 
(given that the pre-TP is already fairly low): –log2(0.8) = 
0.32 bits. The average amount of surprise one will have upon 
learning the diagnosis, i.e. the entropy, is the weighted 
average of these two possible outcomes according to the 
chances of observing each: –(0.2)log2(0.2) – (0.8)log2(0.8) = 
0.72 bits. 

 Before proceeding, we pause to introduce additional 

elements of notation that will facilitate the discussion of 

concepts introduced in subsequent sections. Several 

quantities below will involve taking an average over 

possibilities, weighting each term in the average according to 

its probability. The formula for entropy introduced above is 

one such quantity: it is the average value of the surprisal, 

S = S(p) , where the averaging is over the two possibilities 

“disease present”, with probability p, and “disease absent”, 

with probability 1-p. We denote this average with the 

following bracket notation: 

H D( ) = S = p log2 p 1 p( ) log2 (1 p)  
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 In some cases discussed subsequently, we require 
averaging over continuous variables, in which case the 
bracket notation should be understood as denoting an 
integral, where each value of the quantity of interest is 
weighted by a continuous probability distribution. 

 Although entropy can be calculated at any stage of the 
diagnostic evaluation, we first consider its application to the 
pre-TP, before any tests are conducted. As the pre-TP of 
disease approaches 0 or 1, the associated entropy – or 
uncertainty – approaches zero. Fig. (2B) illustrates this 
relationship across pre-TP values from 0 to 1, showing that 
the entropy approaches zero as the disease probability (p) 
approaches 0 or 1. The point of maximal entropy occurs 
when p = 0.5, equally distant from the extreme cases of zero 
entropy, that is, in the situation in which the patient has a 
“50-50” chance of having a disease. In this context, the use 
of entropy as a form of uncertainty is straightforward: one is 
least uncertain as disease probability approaches 1 or 0, and 
most uncertain (in this mathematical sense) when disease 
probability is 0.5. 

 Note however that the information theoretic meaning of 
uncertainty refers specifically to event probability, and does 
not contain any further clinical or semantic meaning. For 
example, a 50% disease probability may well exceed a 
clinically defined threshold for initiating treatment, despite 
diagnostic uncertainty being highest at this point; such a 
threshold might apply in cases where the treatment is low-
risk and/or the risk of failing to treat a true case is high. 
Certainly OSA falls into such a context – a 50% probability 
of OSA would at least warrant further testing if not initiation 
of treatment. 

 It is also worth noting that the binary entropy function, 
h(p) quantifies uncertainty only by virtue of how distant the 
disease probability is from either zero or one, as reflected in 
the symmetry of the binary entropy function (Fig. 2B). This 
fact can lead to another apparent paradox, in that a clinically 
“informative” test result may nevertheless have minimal 
impact on the degree of entropy or uncertainty, as pointed 
out by Benish [13-16]. For example, one can imagine a test 
result moving OSA probability from 10% (low likelihood) to 
90% (high likelihood), which might substantially influence 
clinical management (e.g., treatment with CPAP versus no 
treatment). Nevertheless, the amount of uncertainty (entropy) 
associated with 10% and 90% disease probabilities are 
identical (Fig. 2B). Thus, in order to capture the notion of the 
amount of information provided a test result (even one that 
moves disease probability to the mirror symmetric point on 
the other side of the binary entropy curve), we turn to 
another information theoretic metric: information gain. 

INFORMATION THEORY: INFORMATION GAIN 
(“RELATIVE ENTROPY”) 

 The amount of information provided by a particular test 

result can be described using a quantity known as the 

relative entropy. Relative entropy is less commonly known 

as the information gain (IG), which we adopt because it 

more aptly represents its meaning in the diagnostic setting. 

Let us suppose that a diagnostic test result for OSA returns 

positive. Although the OSA disease status remains uncertain, 

the associated probabilities have been altered. The disease 

status D  initially had probabilities g 1( ) = p  for disease 

presence and g 0( ) = 1 p  for disease absence. After the test 

result returns positive, we consider disease status as a new 

random variable D
+

, with the updated probabilities 

g
+
(1) = p

+
, for disease presence and g

+
(0) = 1 p

+
for 

disease absence; these values can be calculated from the pre-

TP and test sensitivity and specificity via Bayes’ rule. The 

equation for the information gain for a positive test result is 

defined as: 

IG D
+( ) = p

+
log2

p
+

p
+ 1 p

+( ) log2

1 p
+

1 p
 

 This equation has a structure similar to the entropy 
formula, with a “probability times log2(probability)” format, 
but the log probability aspect now refers to the ratio of 
probabilities: before versus after a test result is obtained. 
Note also that the first and second terms contain probabilities 
corresponding to the post-TP and its converse (1-postTP), 
respectively. The information gain quantifies the difference 
in the average amount of surprise one has upon ultimately 
learning the diagnosis before versus after learning about a 
particular test result. For example, if a positive screening 
result for OSA raised the patient’s OSA probability from 0.1 
to 0.9, we would obtain an information gain as follows: 
(0.9)log2(0.9/0.1)+(0.1)log2(0.1/0.9) = 2.54 bits. 

 Using basic properties of logarithms and rearranging 
terms, we can express this in a more compact and transparent 
way, using our averaging notation, as 

IG D
+( ) = S

+
S

+ +
 

where the ‘+’ subscripts outside the brackets of the S
+

 and 

S
+ +

 terms indicate that the weighted average is with 

respect to the post-TP values of disease status after a positive 

test result ( p
+

and 1 p
+

) rather than the pre-TP ( p  and 

1 p ). The ‘+’ subscript inside the S
+ +

 term indicates that 

the surprisal, S , is calculated with respect the post-TP of 

disease after obtaining a positive test result, p
+

, (i.e. 

S
+

= log2 p
+

), as opposed to the S
+

 term, in which the 

surprisal, S , is calculated with respect to the pre-TP, p  (i.e. 

S = log2 p ). 

 Information gain can also be understood at the population 
level. Suppose that one is a consultant to whom patients are 
referred for the possibility of OSA, and that in this patient 
population one knows that the OSA pre-TP = 10%. The 
surprise upon ultimately learning the diagnosis in these 
patients will be –log(0.1) for patients ultimately proven to 
have OSA, and –log(0.9) for patients ultimately proven not 
to have OSA. Hence the average amount of surprise one has 
after diagnosing many of these patients should approach the 
entropy, H(D) = –(0.1)log2(0.1) – (0.9)log2(0.9) = 0.47 bits. 
Suppose, however, that more people turn out to have OSA 
than the pre-TP of OSA would have predicted, specifically, 
suppose the fraction affected turns out to be 60% in this 
cohort. This could mean that either the test has a different 
sensitivity/specificity profile than we believed, or that the 
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prevalence of OSA was higher than we thought. After some 
investigation, suppose it turns out that in fact the underlying 
referral pattern was such that we tested only patients who 
had already had a positive screening test for OSA, and that 
post-TP = 60%, accounting for the surprisingly enriched 
disease prevalence we discovered in our referral population. 
The surprise was initially calibrated to the larger population 
for whom test results are not known, whereas the actual 
probability of disease is governed by a different set of 
probabilities, hence the high average amount of surprise –
(0.4)log2(0.1) – (0.6)log2(0.9) = 1.42 bits. Knowing the 
referral pattern, one can “re-calibrate” ones expectations, and 
the average amount of surprise will be less now that one 
knows all the referred patients have positive screening 
results: –(0.4)log2(0.4) – (0.6)log2(0.6) = 0.97 bits. We can 
thus define the information gain, IG, comparing our initial 
expectation versus our later understanding of the biased 
referral base, as the difference between the average surprisal 
associated with these two conditions, which is 1.42 – 0.97 = 
0.45 bits. 

 More formally, before we had the extra information, 

under the mistaken belief that the probability of disease was 

pre-TP, p, (when in fact in the referral population it was 

post-TP, p
+

), the average amount of surprise was 

Average surprise before = 

p
+

log2 p 1 p
+( ) log2 (1 p) = S

+
 

 After re-calibration, the probabilities governing one’s 
amount of surprise and the actual probabilities of disease 
will match, hence the average amount of surprise will be 

Average surprise after = 

p
+

log2 p
+

1 p
+( ) log2 1 p

+( ) = S
+ +

 

 Thus the information gain associated with learning the 
test result is defined as 

Information Gain = Average surprise before – Average 
surprise after, 

or IG = S
+

S
+ +

, as stated above. 

 Fig. (3A) illustrates the amount of information gain 
associated with any given combination of pre-TP and post-
TP values. The contour surface contains a “valley” with a 
nadir when the pre-TP and the post-TP are equal – that is, 
the test result did not alter disease probability (a poor test 
indeed), and thus provided no information. The peaks occur 
when the pre-TP and post-TP are most different from one 
another (low pre-TP to high post-TP, and vice versa). The 
information gain does of course depend upon observing a 
particular test result; although not explicitly shown in the 
plot, one could infer the test result for any given pre-TP and 
post-TP pair by calculating the appropriate LR value that 
would provide such a shift in disease probability. Fig. (3B) 
shows the information gain in terms of pre-TP and LR

(+)
 

values, assuming a positive test result is obtained. As 
expected, the information gain increases as the pre-TP 
decreases, and is highest when an unexpected result of a 
strong test occurs: that is, a positive test with high LR

(+)
 in 

the setting of low pre-TP (or a negative test with low LR
(-)

 in 
the setting of high pre-TP; not shown). 

 

Fig. (3). information gain function. (A) The information gain (Z-

axis contour) is shown in relation to any given combination of pre-

TP (X-axis) and post-TP (Y-axis) values. The information gain is 

low when the pre-TP and the post-TP are similar to one another 

(purple “valley”), and high when they are different from one 

another. (B) Information gain (Z-axis) is shown in relation to 

combinations of pre-TP (X-axis) and a spectrum of LR(
+
) values 

(Y-axis). 

INFORMATION THEORY: MUTUAL INFORMATION 

 At this point, we have considered information theoretic 
terms relevant for interpreting diagnostic outcomes (surprisal 
and information gain). Information theory also provides a 
more global context in which to measure how much 
information, on average, a test result provides about disease 
status: mutual information. This is the average amount by 
which uncertainty regarding disease status is reduced by 
testing in a general sense, without specifying the result 
obtained in any particular case. Thus, this quantification is 
more relevant to considering decision support or population-
level policies or recommendations in terms of testing. For 
example, if one were considering OSA screening in a certain 
population, mutual information can provide some insight 
into how informative the testing will be overall at the 
population level. 

 Mutual information explicitly takes into account the pre-

TP, test characteristics (sensitivity and specificity), and the 

different post-TP values after obtaining positive or negative 

test results. We will need one additional piece of notation to 

describe the mutual information: Let the outcome of testing 

be represented by a capital T , a random variable that can be 
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“positive” with probability t
+

, and “negative” with 

probability t . These probabilities will be specific to the 

population in which they were measured, that is, they depend 

on the pre-TP. We can then speak of the mutual information 

between disease status and test result – in other words, the 

information about disease status provided by testing, which 

we denote as MI(D;T ) . 

Derivation of Mutual Information 

 Mutual information is obtained by comparing the entropy 

associated with the pre-TP of disease and that associated 

with the probability of disease given a test result. Drawing 

from the equations above, we can calculate the mutual 

information in two steps. First, we obtain the uncertainty 

associated with the disease status, D , before testing (with 

probabilities g 1( ) = p  and g 0( ) = 1 p ), which is equal to 

H D( ) = p log2 p 1 p( ) log2 1 p( ) = S  

 Second, we obtain the uncertainty associated with the 

disease status after a positive result, D
+

, which is expressed 

using the probabilities g
+
(1) = p

+
, (i.e., the post-TP) and 

g
+

0( ) = 1 p
+

. Thus, the entropy of D
+

 is written as 

H D
+( ) = p

+
log2 p

+
1 p

+( ) log2 1 p
+( ) = S

+ +
 

 The first term is the surprisal upon finding that a patient 

with a positive result actually has the disease, weighted by 

the probability of that outcome (ie, the post-TP), p
+

. The 

second term is the surprisal upon finding that a patient with a 

positive result actually does not have the disease, weighted 

by the probability of that outcome (ie, the 1-post-TP), 

1 p
+

. Together, they comprise the average surprisal 

associated with a positive test result, S
+ +

. 

 The disease status after a negative result is D , based on 

the probabilities g (1) = p , (i.e., the negative predictive 

value) and g 0( ) = 1 p ; these probabilities can be 

calculated by Bayes’ theorem, or by the 2x2 box, 

equivalently. The entropy associated with D_ is written as 

H D( ) = p log2— 1 p( ) log2 1 p( ) = S  

 To express the average entropy, we weight each of these 

terms by the probability of their associated results, i.e. the 

probability of a positive ( t
+

) or negative ( t ) test result. The 

difference between the first of these (pre-test entropy) and 

the weighted combination of these last two entropy values 

(post-test entropies) is the mutual information, that is 

MI D;T( ) = H D( ) t
+
H D

+( ) t H (D )  

Alternative Formulae for Mutual Information 

 It is instructive to express the formula for mutual 

information in several different ways. First, using the fact 

that H D( ) = t
+
H (D) + t H (D) , and denoting the change in 

uncertainty due to a positive or negative test result as 

U
+

= H D( ) H (D
+
)  and U = H D( ) H D( ) , we can 

rewrite the mutual information simply as the average change 

in the amount of uncertainty, where the average is simply the 

sum of the changes in uncertainty due to a positive and 

negative test results, weighted by the probability of those 

results, 

MI D;T( ) = t
+

U
+

+ t U  

 Alternatively, for more direct comparison with the 
formula for information gain, we can also express this 
formula directly in terms of average surprisal values 

MI D;T( ) = S = t
+

S
+ +

t S  

 Finally, it is also possible (see Appendix A) to express 
mutual information as simply the average information gain 
associated with testing (i.e. averaging over a large 
population, or, for individuals, the “expected” information 
gain, with the information gain associated with positive or 
negative test results weighted by their probabilities): 

MI D;T( ) = t
+
IG D

+( ) + t IG(D ).  

Illustrations of Mutual Information 

 Fig. (4) shows the mutual information provided by 

diagnostic tests with any combination of sensitivity and 

specificity, in the setting of three representative pre-TP 

values (5%, 20%, 50%). As expected from the symmetry of 

the binary entropy function, h(p) , the mutual information 

for any of these hypothetical tests is greatest when the pre-

TP is 50%. The plots for pre-TP values of 80% and 95% are 

identical to those for pre-TP values of 20% and 5%, 

respectively, due to the symmetry seen in Fig. (2B) (not 

shown). For any given pre-TP, the mutual information 

increases as sensitivity and specificity increase, as expected. 

 To summarize, the critical distinction between the mutual 
information and the information gain is that both possible 
outcomes of the dichotomous test result are included in the 
mutual information calculation. Mutual information can be 
thought of as a metric of overall test performance, based on 
the combination of test characteristics (sensitivity and 
specificity) and the clinical context provided by the pre-TP 
of disease. The information gain, by contrast, considers the 
surprise at ultimately learning the diagnosis if one does 
versus does not know a particular test result. The clinician 
managing an individual patient must, of course, act on the 
specific test result in hand, and not on the spectrum of 
possible outcomes of testing. Nonetheless, the mutual 
information provides important insight into test performance, 
on average, in a given population, which may be useful when 
comparing tests, or when making policy-level decisions 
about diagnostic testing. 

SUMMARY OF OSA DIAGNOSIS EXAMPLE OVER 
SEVERAL INFORMATION THEORY METRICS 

 To demonstrate the logic and application of these 
information theoretic quantities, consider a hypothetical 
screening test for which sensitivity = 90% and specificity = 
82% (much better than the current best-performing OSA 
screen, the STOP-BANG questionnaire), performed on a 
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patient who has a pre-TP of OSA = 10%. From the pre-TP 
estimate, we can calculate the surprisal of an event with 
probability = 0.1, which is –log2(0.1), or 3.32 bits. From the 
sensitivity and specificity, we can calculate the LR

(+)
 and 

LR
(-)

 values of 5 and 0.12, respectively, for this screening 
test. Using Bayes theorem (or the nomogram), we can 
determine that the probability of OSA given a positive test 
result is 35.7% and the probability of OSA given a negative 
test result is 1.4%. 

 

Fig. (4). Mutual information function. The mutual information is 

shown in relation to combinations of sensitivity (X-axis) and 

specificity (Y-axis), across three pre-TP values: 50% (A), 20% (B) 

and 5% (C). 

 From these post-TP values, we can calculate two values 
of information gain, one for the case of a positive test result 

0.36 log2

0.36

0.1
+ 1 0.36( ) log2

1 0.36

1 0.1
= 0.34 bits  

and one for the case of a negative test result  

0.01log2

0.01

0.1
+ 1 0.01( ) log2

1 0.01

1 0.1
= 0.09 bits  

 The different numbers of bits in the information gain for 
these results suggests that more information was contained in 
the unexpected, positive test result. This reflects and 
quantifies the fact that the positive result caused a greater 
absolute change in OSA probability (10% to 36%, a 26% 
absolute difference), compared to the negative test result 
(10% to 1%, a 9% absolute difference). 

 Next, the mutual information informs us about overall 

test performance (for example, across a population of 

patients), or how much information the test will provide on 

average. We will calculate it using the first of the formulae 

for mutual information that we introduces above, i.e. : 

. MI D;T( ) = H D( ) t
+
H D

+( ) t H D( ).  

It is easiest to break this calculation into steps. First, 

calculate the pre-test uncertainty 

H D( ) = p log2 p 1 p( ) log2 1 p( )  

= –(0.1)log2(0.1) – (0.9)log2(0.9) = 0.47 bits (as above) 

 Next, calculate the uncertainty after a positive test result, 

H (D
+
) , by using the post-TP after a positive result, 0.36, 

according to: –(0.36)log2(0.36) – (0.64)log2(0.64) = 0.94 

bits. We then multiply this uncertainty by the probability of a 

positive test, t
+

. This value, 
 
t
+

, is calculated by knowing the 

sensitivity, specificity, and pre-TP, as follows. The 

probability of a positive result given disease is the 

sensitivity, while that of positive result given no OSA is 1-

specificity. Each of these is weighted according to the prior, 

such that: sensitivity x pre-TP + (1-specificity) x (1-pre-TP) 

= the probability of a positive test result. Using our example, 

we have 
  
0.1 0.9 + 0.9 0.18 = 0.25 = t

+
. Third, calculate the 

uncertainty after a negative test result, 
  
H (D ) , using the 

post-TP after a negative result, 0.02, according to: –

(0.01)log2(0.01) – (0.99)log2(0.99) = 0.10 bits. We weight 

this by the probability of obtaining a negative test result, t , 

which we can get by simply subtracting 
  
1 t

+
, that is, 

  
t = 0.75 . Finally, putting all the pieces together, we have 

MI D;T( ) = 0.47 0.25 0.94( ) 0.75 0.1( ) = 0.16  bits. 

UNCERTAINTY WHEN A RANGE OF PRE-TP 
VALUES IS GIVEN: BAYESIAN APPROACH 

 We have until now considered only point estimates of 
pre-TP for convenience. However, in cases of clinical 
judgment and epidemiological studies alike, the pre-TP may 
be arguably better represented by a range of plausible values. 
In this and subsequent sections, we investigate the impact of 
ranges (instead of point estimates) of pre-TP on the resulting  
post-TP. Initially, we consider these ranges simply as 
boundaries of possible values, without specifying any 
particular distribution over this range (we will address this 
later). Thus we consider a given uncertainty interval (say, 
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20±5%) for the pre-TP of disease (Fig. 5A). Using any given 
combination of sensitivity and specificity values, we can 
implement Bayes’ theorem to generate a post-TP range. In 
the nomogram, note that the 20±5% range becomes ~30% 
larger in the projected post-TP range (~64-77%) when the 
result of a test with LR

(+)
 of 10 is unexpectedly positive, 

while it shrinks markedly when the test result was negative 
(and therefore expected given the low pre-TP). Fig. (5B) 
shows the relationship, over a broad range of LR

(+)
, between 

the pre-TP range (assumed to be 15% in the figure, indicated 
by the horizontal line), and post-test probability range. We 
see that the width initially grows, then at extreme LR

(+) 

values (corresponding to very “strong” test results), the 
width again shrinks. We will have more to say about this fact 
below. 

 These plots also provide an opportunity to preview the 
question of whether uncertainty, considered in quantitative 
(i.e. information theoretic) terms, increases due to an 
unexpected test result. Clearly the range of possible disease 
probabilities has grown in absolute terms for a particular 
patient’s positive result (or shrinks if the result was 
negative). We might therefore expect that uncertainty 
(measured in information theoretic terms) should increase in 
response to an unexpected result, and we will see below that 
this is indeed the case. On the other hand, the weighted 
average of the post-TP ranges after a positive versus a 
negative test result would be smaller than the pre-TP range, 
hence performing the test can be considered to decrease 

uncertainty about the disease status on average, even though 
some of the time, the result will be unexpected and increase 
uncertainty. This leads us to expect that testing reduces 
uncertainty on average, which we will see is also the case. 

Interlude: Simplifying the Notation 

 In introducing the information theoretic concepts 

appropriate for quantifying the impact of test results on 

diagnostic uncertainty, we have introduced several different 

notational conventions. While these have been useful in 

conveying the concepts thus far, in the section that follows it 

will be helpful to introduce a few shorthand notations for the 

three main information theoretic quantities of entropy, 

information gain, and mutual information. The reason for 

doing this is that concepts in the final sections build upon 

those in previous sections, and without simpler shorthand for 

the core building block concepts the notation becomes 

cumbersome. From here on, we will use the following: 

Entropy, or uncertainty, will be denoted  U ; information 

gain, IG ; and mutual information, MI. Thus far all of these 

quantities have referred directly to the uncertainty of 

information associated with disease status, as opposed to the 

uncertainty associated with estimates of the pre-TP itself. 

We will thus distinguish, using subscripts, between 

quantities directly concerned with disease status, and those 

associated with the range of pre-TP, as follows: The disease-

status uncertainty is UD , information gain (about disease 

Fig. (5). Test results project pre-TP ranges into post-TP ranges. (A) The pre-TP range of 15-25% is projected through a positive and a 

negative test result using the Bayes nomogram. The positive test result is unexpected (since pre-TP was low), and the resulting post-TP range 

is expanded (~64-77%). In contrast, the negative test result markedly reduces the probability range, with a post-TP of ~1.5-3%. (B) Starting 

from a pre-TP range of 15% (horizontal line), the width of the post-TP range at first increases with LR(+), peaks, then decreases and, for 

strong enough tests, ultimately becomes narrower than the width of the pre-TP range. 

B 

Pre-TP LR Post-TP 
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status) for positive test is IGD , and the mutual information 

(between disease status and test results) is MID . These are 

the quantities described above, for which we have already 

presented formulas. By contrast, the corresponding quantities 

associated with the range of pre-TP values (introduced 

below), will be denoted by UR , IGR , and MIR . 

UNCERTAINTY WHEN A RANGE OF PRE-TP 
VALUES IS GIVEN: INFORMATION THEORETIC 

APPROACH 

 We have seen how the range of pre-TP values can be 
transformed via Bayes’ rule into an expanded post-TP range, 
due to an unexpected test result. We now quantify this effect 
in information theoretic terms, relating changes in the post-
TP range to changes in uncertainty. To do this we need to 
characterize the two sources of uncertainty under discussion: 

1. Uncertainty regarding the pre-TP, p. As mentioned in 

the introduction, one way to think about pre-TP 

uncertainty is to consider it a random variable, P , 

that can take on values within a range, instead of a 

point estimate. That is, for the pre-TP, p , we specify 

that it falls within a range, a p b . We can be even 

more explicit by considering how probable each value 

is, that is, by specifying a distribution of pre-TP 

values over the range. This can be formalized by 

specifying a function, f (p) , denoting the probability 

that pre-TP assumes any particular value p within the 

specified range. For simplicity, we will first assume a 

uniform distribution, that is, all probabilities within 

the range are equally likely, so that 

f p( ) = 1 / (b a) within the range, and 

f p( ) = 0 outside the range. For concreteness, 

referring back to OSA example, suppose that rather 

than knowing that the pre-TP is precisely 10%, we 

know only that the pre-TP value lies in the range 5-

20%, with no reason to consider any of these values 

more likely than any other (as in Fig. 6C). The 

uncertainty associated with not knowing the pre-TP 

value precisely is then UR .  

2. Uncertainty regarding disease status, UD . For any 

given pre-TP value the disease status is uncertain 

(except at the extremes, pre-TP = 0 or 1). We can 

represent this as before by thinking of the disease 

status as a random variable, D , that can assume the 

value of 1 (disease present) or 0 (disease absent). 

 In our OSA example, the disease-status uncertainty UD  

is precisely the source of uncertainty we have focused on up 

to this point, i.e. our uncertainty about whether our patient 

has OSA. 

 However, we see that now the disease probabilities 

depend on an unknown value for the pre-TP (i.e. on the 

random variable P ), making the expression for the 

uncertainty of this value slightly more complicated. It turns 

out that the needed expression can be derived easily after 

first specifying the joint probability distribution of the 

disease state with that for the pre-TP value. We denote this 

joint distribution as h(p,d) . Using Bayes’ rule, we write 

h p,d( ) = f p( )g(d | p) . This formula reads as follows: the 

entropy associated with the disease status and the pre-TP 

range is a function of the probability distribution over the 

range, times the probability of disease given this range. 

Thus, the probability of disease (D = 1)  or disease absence 

( D = 0 ) when the pre-TP is equal to p is given by 

g 1|p( ) = p  or g 0|p( ) = 1 p , respectively. 

 From these building blocks, it follows that the total 

uncertainty regarding disease status before any test is 

performed is given by the combination of the entropy 

associated with the two random variables, P  and D . This 

joint entropy is written as H (P, D) , and it can be broken 

into a sum of two terms, H P, D( ) = H P( ) + H (D | P)  (see 

Appendix B). Hereafter, we will refer to UR = H (P)  as the 

`range uncertainty’, and UD = H D|p( )  as the `disease 

uncertainty’. The UR = H (P)  term is the uncertainty 

(entropy) regarding the pre-TP. The UD = H (D | P)  term 

is the uncertainty regarding the disease probability averaged 

over the range of possible pre-TP values under consideration 

(that is, each point in the range contributes to the average, 

weighted by its probability). Their sum, the `total 

uncertainty’, is written as H (P, D) . The total uncertainty 

can now be compactly expressed as 

UT = UR + UD .  

 In our OSA example, our total uncertainty is composed 
of our uncertainty regarding the true value of the pre-TP of 
disease, and our uncertainty regarding the patient’s disease 
status. 

Range Uncertainty: How a Test Result Warps the 
Distribution of Pretest Probabilities 

 As discussed above, updating disease probability when 
the pre-TP was considered as a range instead of a point 
estimate involves a change in the width of the range. 
However the shape of the probability distribution over the 
stretched range also changes, owing to the nonlinearity of 
Bayes’ formula. As an example, suppose the pre-TP is 
uniformly distributed over the range 75-90% (width = 15%, 
Fig. 6A “pre”). In this case of high pre-TP, if a positive test 
result is observed, we find that the post-TP range is narrower 
than the pre-TP range: 94-98% (width = 4%, Fig. 6A 
“post”). This is intuitive, as the positive result was expected 
(the pre-TP was high to begin with), and thus we would 
expect our uncertainty to decrease, which it did (smaller 
range in post-TP). However, in addition to this narrowing 
effect, we see that the shape of the distribution over the post-
TP is no longer uniform. Rather, the distribution is shifted so 
that the bulk of the probability `mass’ is concentrated toward 
the right side of the distribution. Fig. (6C) shows the 
consequences an unexpected positive result, obtained when 
the pre-TP was low: 5-20% (width 15%, Fig. 6C “pre”). 
Given an LR

(+)
 value of 5 for the positive test result, the 

post-TP range stretches to 21-56% (width = 35%, Fig. 6C 
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“post”), and the probability distribution is shifted toward the 
right-most border of the range. 

 While we can appreciate the widening of the post-TP 
range relative to the pre-TP range using the Bayes’ 
nomogram as described earlier, to understand the alteration 
of the pre-TP distribution’s shape it is helpful to examine the 
nonlinear mapping from pre- to post-TP more explicitly. 
Consider the `football’-shaped plot of Fig. (6B), in which the 
curved lines correspond to different LR values. Curves 
below the straight diagonal line (LR=1) correspond to 
negative test results (i.e., when LR < 1), and the curves 
above it correspond to positive test results (i.e., when LR > 
1). For the example shown in Fig. (6B, D), LR

(+)
 = 5. Note 

that curves for LR > 1 have a steep initial slope at lower pre-
TP values, which progressively decreases with increasing 
pre-TP. This shape explains the shift in probability 
distribution mass seen above. Given the concave downward 
shape of the LR>1 lines, for any two ranges of equal width 
on the pre-TP axis (that is, any two ranges that contain equal 
amounts of probability mass), the right-most one will be 
mapped through a more shallowly sloped portion of the LR 
curve. Mapping through a more shallow portion translates 
into a more narrow portion of the post-TP axis. This explains 

the concentration of pre-TP distribution toward higher post-
TP values in our example. 

 We will use the case illustrated in Fig. (6C) (pre-TP 
estimated to lie in the interval 5-20%, a diagnostic test with 
LR

(+)
=5, LR

(-)
=0.12) to continue our running OSA example, 

treating this range as a clinician’s estimate of the pre-TP that 
a particular patient has OSA, as might be the case for a 
patient who has some typical signs (e.g. excessive daytime 
sleepiness) but not others (not obese, no snoring). A positive 
test for OSA in such a patient produces considerable 
alteration of the pre-TP of disease. After the positive test, the 
quantitatively-inclined clinician will be left thinking that the 
patient may or may not have OSA (as quantified by the 
distribution of the post-TP values), with the majority of the 
probability mass now concentrated near the middle of the 
zero-to-one range, i.e. a state of much-increased uncertainty. 
We now turn to quantifying this uncertainty numerically, 
paralleling our earlier discussion when the pre-TP value was 
known precisely. 

Range Uncertainty: Quantifying the Effect of 
Distribution Widening and Warping on Uncertainty 

 Analogous to the formula for uncertainty (entropy) 

regarding disease status, the expression for the range 

 

Fig. (6). Stretching and warping effects of test results on disease pre-TP distributions. (A) A uniform distribution over the range 75-90% 

(width = 15%) is transformed by an expected positive test result with LR
(+)

 = 5 into a shifted and warped non-uniform distribution over a 

narrower range, 94-98% (width = 4%). (B) The reason for the shifting, warping, and range-narrowing is evident from the “football” plot, 

showing how Bayes’ rule nonlinearly maps pre-test probabilities into post-test probabilities. (C) A uniform distribution over the range 5-20% 

(width 15%) is transformed by an unexpected positive test result when LR
(+)

 = 10 into a shifted and warped non-uniform distribution over a 

wider range, 34-71% (width = 37%). (D) Football plot showing the reasons for the shifting, warping, and widening. 
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uncertainty H (P)  is given by adding up the value of the 

surprisal function S(p)  over the range of possible values 

a p b , weighting each term in the sum by the 

corresponding probability, f (p) . However, in this case we 

have a continuous range of possible pre-TP values, so 

`adding up’ really means computing an integral, 

H P( ) =

a

b

f p( )S p( )dp = S  

 Recall that the angled brackets indicate averaging with 

respect to a continuous distribution f (p)  rather than a 

discrete (i.e. binary) probability distribution. In Fig. (7A), 

the value of the entropy associated with the uniform pre-TP 

distribution of the ‘unexpected positive result’ example 

(from Fig. 6C, “pre”) is plotted as a solid straight line, to 

allow comparison with the post-TP range entropy, shown as 

a solid black curve. For comparison, a lighter gray line 

represents the entropy that would result if the distribution 

over disease probabilities in the post-TP setting merely 

increased in width, while remaining uniform (rather than 

being warped, as is actually the case). This illustrates the 

intuitive fact that for any two probability distributions over 

the same range of values, a uniform distribution represents 

the situation of greatest uncertainty (in other words, the least 

amount of structure of the probability distribution). 

Nevertheless, we see that the dominant effect on the post-TP 

range uncertainty in this example results from the change in 

the width (rather than the shape) of the distribution. For most 

of the LR values shown, the post-test range uncertainty line 

is above the pre-test range uncertainty line, in agreement 

with the intuition that a wider probability range entails 

greater uncertainty. However, for very large LR
(+)

 values, the 

range uncertainty again decreases, corresponding to the fact 

that the width of the post-TP distribution shrinks relative to 

the pre-TP range for high LR values (compare with Fig. 5B). 

The reason for this can be appreciated by considering again 

the football plots in Fig. (6B, D): The LR curve for large 

LR
(+)

 tests approaches the upper left corner of the plot, hence 

projecting pre-TP ranges to such LR curves will encounter 

the shallow portion, and thus project the pre-TP range to a 

narrower post-TP range. 

 In the OSA example, where LR
(+)

=5, and the endpoints 
of the range were a=5%, b=20%, the same values were used 
in Fig. (6C) and in computing the curves in Fig. (7). In this 
case, the distance between the dotted line (pre-TP 
uncertainty) and the solid curve (post-TP uncertainty) 
represents the effect of widening, shifting and warping of the 
range uncertainty induced by a positive OSA test result. 
Specifically, the positive result increased the range 
uncertainty by 1.17 bits. 

Disease Uncertainty 

 For any given value of the pre-TP p, the disease 

uncertainty UD = H D|p( )  is simply given by the binary 

entropy function h p( ) = p log2 p 1 p( ) log2 (1 p) . The 

average uncertainty UD = H (D | P)  in the expression above 

is thus simply the average value of the binary entropy 

function over the range of pre-test probabilities, i.e. 

UD = H D|P( ) =

a

b

f p( )H D|p( )dp =

a

b

f p( )h p( )dp  

 The pre-test disease uncertainty for the case we have 
been considering (uniform distribution of pre-TP over the 
range 5-20%, Fig. 6C) is plotted as a solid horizontal line in 
Fig. (7B). The curve of post-test disease uncertainty versus 
LR shown in Fig. (7B) has a qualitatively similar shape to 
the curve for the post-test range uncertainty. The reason is 
essentially the same as in the situation with unexpected 
results when we were considering single values for the pre-
TP rather than a range: Disease uncertainty (entropy) is 
highest when the probability of disease is 50%. Hence, we 
see that for intermediate LR values (greater than 1, but not 
`too’ large, as in Fig. 6C, “post”), the post-TP values are 
distributed in such a way that values near to 50% are more 
likely than in the pre-test setting, causing the post-test 
disease uncertainty to be greater than the pre-test disease 
uncertainty. Nevertheless, as we have seen, for very large 
LR

(+)
 values, a positive test result causes the post-test disease 

probabilities to become narrowly concentrated around a high 
post-TP (as in Fig. 6A, “post”), far from 50%, hence the 
post-test disease probability decreases for large LR

(+)
 values. 

 From the OSA example in which LR
(+)

=5, a positive 
result in this setting of an uncertain pre-TP value produces 
an increase in the disease uncertainty by 0.41 bits (the 
distance in bits between the dotted line and the overlying 
curve). 

Total Uncertainty 

 As mentioned above, the total uncertainty UT = H (P | D)  

is the sum of the range uncertainty UP = H (P)  and disease 

uncertainty, UD = H (D | P) . Clearly, given the similar 

overall shapes of the curves for these component parts of the 

sum, the overall shape of the curve for the total uncertainty 

shows the same behavior: increased uncertainty for low and 

intermediate LR values, followed by decreased total 

uncertainty in the face of unexpected but highly compelling 

(high LR
(+)

) positive test results (Fig. 7C). 

 Once again, for our OSA example, this means that the 
total increase in uncertainty associated with a positive test 
result is composed of the 1.17 bits contribution from the 
increased range uncertainty, plus the 0.41 bits contribution 
from the increase in the disease uncertainty, for a total 
increase in uncertainty of 1.58 bits. 

INFORMATION GAIN WHEN A RANGE OF PRE-TP 
VALUES IS GIVEN 

 We can also extend the notion of information gain to 

handle pre-TP values given as a range rather than as a simple 

point estimate. Using notation from the previous section, 

when we obtain a positive test result, we effectively update 

the random variables representing the range of pre-TP and 

disease status, P, D , to obtain new random variables P
+
, D

+
 

(assuming a positive test result). These new random  
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Fig. (7). Effects of test results on diagnostic uncertainty. 

Uncertainty (entropy) associated with the uniform pre-TP 

distribution P  from Fig. (6C), plotted as a function of the LR
(+)

. 

Values on the y-axes are shown without magnitude to emphasize 

the qualitative behavior of these uncertainty measure. The subplots 
show: (A) the range uncertainty, UR = H (P) , representing 

uncertainty about the pre-TP value; (B) the disease uncertainty, 

UD = H (D | P) , representing the uncertainty inherent in not 

knowing the true disease state uncertainty; and (C) the total 
uncertainty UT , the sum of the other two components 

UT = UR + UD . For the range uncertainty, an additional curve is 

shown for comparison (light gray line), representing the entropy for 

a distribution with the same width or range as the post-TP 

distribution, but with a uniform distribution over this range (rather 
than a warped shape). 

variables clearly have new probability distributions, i.e. a 

positive test result effectively causes the following 

transformation to take place: h p,d( ) = f p( )g d|p( )  

h
+

p,d( ) = f
+

p( )g
+

d|p( ),  where the “+” subscript indicates 

the transformation of the pre-TP distribution f (p)  by the 

positive result into its “warped” counterpart f
+
(p) , as 

illustrated previously in (Fig. 6A, C). Similarly, we express 

the transformation of the pre-TP g(d | p)  into the post-TP as 

g
+
(d | p) . As with the expression for uncertainty, the 

information gain incurred by a positive test result can be 

naturally expressed as a sum of two terms 

IGT = IGR + IGD+
 

 In this sum, the first term, IGR , represents the 

information gain related to the transformation of the 

distribution of probabilities over the range of possible pre-TP 

into the shifted and warped distribution over the range of 

possible post-TP (i.e. the transformation f p( ) f
+

p( ) , 

namely 

IGR = S
+

S
+ +

=

a

b

f
+

p( ) log2 f (p) +

a

b

f
+

p( ) log2 f
+
(p)  

 The second term, IGD , represents the information gain 

associated with the update of any given pre-TP into the 

corresponding pos-TP (i.e. the transformation 

g d|p( ) g
+
(d | p) , averaged over the entire range of 

possible disease probabilities, i.e. IGD = IG(D
+
) , as defined 

previously, which is in fact a function of the pre-TP, p, so 

that we can write IGD = IGD (p) , and 

IGD +
=

a

b

f
+

p( ) IGD (p)  

 An illustrative example is shown in Fig. (8), plotting 

information gain against LR
(+)

, and assuming as before that 

the pre-TP value is uniformly distributed between 5-20% (as 

in Fig. 6C). In the figure, the red and blue lines represent the 

first and second terms, IGR , and IGD +
, respectively, and 

the black line represents their sum, i.e. the total information 

 

 

Fig. (8). Effects of test results on diagnostic information gain. 

The total information gain IGT  (solid black curve), and the two 

components in the sum IGT = IGR + IGD +
, are shown as a function 

of the positive likelihood ratio. The range information gain IGR  is 

the lower red dashed curve, and the disease information gain is the 

middle blue dashed curve. These curves are computed using the 
distribution over pre-TP values from Fig. (6C). 

C 

B 

A 
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gain, IGT . Notice that information gain is always positive, 

despite the observation in the previous section that, for a 

wide range of LR values the amount of uncertainty increases. 

While this may seem paradoxical (at least semantically), it 

actually makes sense if we recall that information gain is a 

measure of the discrepancy between two probabilistic 

models. In this case, we treat the post-test situation, modeled 

by h
+

p,d( ) = f
+

p( )g
+
(d | p) , as the most “up-to-date” 

model, being informed by the positive test result now in-

hand. The information gain then tells us how big was the 

discrepancy between this and the pre-test model, 

h p,d( ) = f p( )g(d | p) , thus, how much information was 

“gained” in updating the pretest model. 

 In our OSA testing example (LR
(+)

=5), the total 
information gain resulting from a positive test in this setting 
of an uncertain pre-TP is 0.09 bits. This total is composed of 
a gain of 0.004 bits related to the gain of information about 
the pre-TP value, and 0.0986 bits related to the disease 
status. 

MUTUAL INFORMATION WHEN A RANGE OF 
PRE-TP VALUES IS GIVEN 

 Finally, we can extend the concept of mutual information 
introduced earlier to the situation in which a range of pre-TP 
values is given. Not surprisingly, this total mutual 
information can be expressed as a sum of two terms 

MIT = MIR + MID .  

 Here, MIR  describes the average amount by which a test 

result decreases the overall uncertainty associated with the 

distribution over disease probabilities, by narrowing and/or 

reshaping the distribution. The term MID  is the amount of 

uncertainty reduction conferred by a test result for any given 

pre-TP 
 
p , averaged over the range of possible pre-TP within 

the allowed range. 

 To apply this formula to our OSA testing example, 

consider the population level viewpoint in which our  

knowledge of the pre-TP value for the population is 

uncertain, modeled by the distribution in Fig. (6C). From 

here, let us ask how much information we may gain, on 

average over this population, by performing the hypothetical 

OSA test above, with LR
(+)

=5, LR
(-) 

= 0.12 (i.e., sensitivity 

0.92, specificity 0.8). The relevant calculations yield a 

mutual information value between the average testing 

outcome and the pre-TP value, IR , or 0.1827 bits; we also 

obtain a disease-status mutual information MID  of 0.1747 

bits, for a total mutual information of 0.3574 bits. 

 It is important to note that the overall mutual information 

and its constituent terms are always positive quantities, i.e. 

the average effect of testing is to provide a net decrease in 

uncertainty, despite the fact that individual positive or 

negative test results may either increase or decrease 

uncertainty. This point can be better understood by further 

dissecting each term in the total mutual information MIT  

into its constituent parts 

MIR = t
+

UR
+

+ t UR  

and 

MID = t
+

UD
+

+ t UD  

where t
+

 and t  represent the probability of obtaining 

positive and negative test results, respectively. Thus, each 

term contributing to the total mutual information is in turn a 

sum of a “positive” and “negative” component, i.e. a 

component expressing the change in uncertainty incurred by 

a positive test result, weighted by the probability of a 

positive test result, and a complementary term for negative 

test results. Substituting these expressions for the terms in 

the previous expression for the total mutual information and 

rearranging, we see that the total mutual information can be 

re-expressed as a sum of “positive” and “negative” test result 

components: 

MIT = MIT
+

+ MIT ,  

with MIT
+

= t
+
( UR

+

+ UD
+

)  and MIT = t ( UR + UD ) . 

As discussed in our initial presentation of mutual 

information, for any useful test (one that alters the 

probability of disease), the average result will be to decrease 

overall uncertainty. This is true despite the fact that 

uncertainty increases in cases of unexpected test results, 

because these are less likely compared to the more probable 

expected results, which receive more weight in the above 

expressions. Hence, mutual information is always positive. 

The relationships just described are illustrated in Fig. (9). 

 Calculating these quantities for our OSA example, we 

find a value for the positive component of MIT +
=  0.0806 

bits, and for the negative component MIT =  0.2768 bits, for 

a total average quantity of information obtained by testing of 

0.3574 bits, identical to the value arrived at by alternative 

means above. 

DISCUSSION 

 Rational diagnostic test interpretation requires considering the 
combination of 1) test performance in discriminating disease 
presence from absence, and 2) the baseline probability of disease 
before any testing is undertaken. In the most simplified 
formulation, the test result and the disease status are considered to 
be dichotomous, allowing the familiar terms of sensitivity and 
specificity and disease probability to be employed. Whether one 
considers the Bayes’ nomogram, or uses the 2x2 box, the post-TP 
of disease given a test result can be assessed in a straightforward 
manner by considering sensitivity, specificity and pre-TP values. 

 Here, we have provided parallel approaches using 
information theoretic concepts. We see that an information 
theoretic formulation provides insight into diagnostic test 
interpretation at the level of specific test results in specific 
patients (through the constructs of surprisal and information 
gain), as well as in a more general or population sense that 
considers the weighted average of testing outcomes within a 
populations (through the constructs of entropy and mutual  
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Fig. (9). Mutual information between test results, disease status, 

and pre-TP range. (A) Total mutual information MIT  and its 

components, the mutual information between test results and the 
pre-TP range, MIR , and the mutual information between the test 

results and disease status, MID , where the brackets indicate the 

weighted average over all possible values of the pre-TP. These 

three quantities are related by the sum MIT = MIR + MID . Each 

term can be further broken down into constituents, as illustrated in 

B and C. (B) Components of the equation for the disease-state 

related mutual information, MID . The component terms are the 

change in uncertainty induced by positive and negative test results, 

UD+
 and UD , respectively. The disease-state related mutual 

information is computed by adding these components together, 

weighted by the probability of the corresponding test result, 
denoted t

+
 for a positive result, and t  for a negative test result, i.e. 

MID = UD + UD+
. (C) Components of the equation for the 

range-related mutual information, MIR . The comp onent terms are 

the change in uncertainty (entropy) that results from positive and 
negative test re sults, UR and UR+

, respectively. The mutual 

information between the test result and unknown value of the pre-

TP (i.e. the range-related mutual information) is computed by 
adding these components toget her, weighted by the probabi lity o f 

the corresponding test results, i.e. MIR = t
+

UR+
+ t UR .  

information). Like the concept of uncertainty, the concept of 
information can take on various meanings depending on the 
context. We have striven to clarify the technical meanings of 
these terms and concepts, and to point out how these relate to 
and differ from their usual senses in the medical vernacular, 
in hopes that an appreciation of the semantic variability of 
these terms may help distinguish the clinical parlance from 
the information theoretic meaning of these terms. 

 Uncertainty in the interpretation of test results assumes at 
least two key forms– one form relating to the fact that 
considering disease status as a probability in itself expresses 
a degree of uncertainty, and another form relating to need to 
estimate the disease probability as a range of possible values 
rather than as a single, precise number (e.g. the confidence 
interval of a pre-TP estimate). This latter form of 
uncertainty, implicit in the typical unavailability of precise 
disease probability estimates, contains certain non-intuitive 
features, as described here and previously [19]. The vagaries 
and diversity of patient presentations (which form the basis 
of pre-TP estimations) suggest that the pre-TP may be 
represented better by ranges (more precisely, distributions 
over ranges) rather than by simple point estimates. In this 
paper we have provided the first deomonstration of how this 
additional uncertainty regarding pre-TP estimates can be 
rigorously quantified using appropriate concepts from 
information theory. 
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APPENDICES 

Appendix A: Derivation of Mutual Information as 

Expected Information Gain 

 Here we show that the mutual information between the 

disease state and a diagnostic test result can be expressed as 

the expected information gain, i.e. MI D;T( ) = t
+
IG D

+( ) +  

t IG(D ) , where t
+

 and t  are the probabilities of positive 

and negative test results, respectively. Recall from the main 

text that the one expression for the mutual information is 

MI D;T( ) = S t
+

S
+ +

t S  

whereas an expression for the information gain from a 
positive test result is 

IG D
+( ) = S

+
S

+ +
 

and for a negative test result 

IG D( ) = S S  

 Noting that t
+

+ t = 1 , then adding and subtracting the 

terms S
+

 and S  in the appropriate places thus yields 

A 

B 

C 
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MI D;T( ) = S t
+

S
+

t S + t
+
IG D

+( ) + t IG(D )  

 Hence, we need only to show that the first three terms 

sum to zero. For convenience, we use the overbar notation to 

denote the converse of a probability, x = 1 x . We then 

have, for the sum of the first three terms, 

log p p + t
+
p

+
+ t p( ) + log p( p + t

+
p

+
+ t p )  

Recall that p
+

= Pr(D+ |T +) , and t
+

= Pr(T +) , so by 

Bayes’ rule p
+
t
+

= Pr(D
+
,T

+
) . Similarly, p = Pr(D+ |T ) , 

and t = Pr(T ) , hence p t = Pr(D+,T ) . Thus the sum 

t
+
p

+
+ t p = Pr D+,T( ) + Pr D+,T +( ) = Pr D +( ) = p  

so that consequently, the first term vanishes. Similar 
calculations show that the second term also vanishes, 
proving the desired result. 

Appendix B: Derivation of the Decomposition Formula 
for Joint Entropy 

 Here we show that the joint entropy of two random 

variables can be written as the sum of the entropy of the 

distribution for the first random variable plus the entropy of 

the distribution for he second random variable conditional on 

the first, i.e. H P, D( ) = H P( ) + H D|P( ) . This follows 

directly from the definition of entropy and from Bayes rule. 

Using the notation from the main text, we write the joint 

distribution as h p,d( ) = f p( )g d|p( ) , which is simply an 

expression of Bayes’ rule, or equivalently, the definition of 

conditional probability. Then, using our bracket notation to 

denote averaging, we have H P, D( ) = logh p,d( )
P,D

, 

where the subscripts indicate performing the weighted 

averaging over the entire range of both random variables P  

and D . Substituting and using the basic property of 

logarithms that log x y = log x + log y , we have 

H P, D( ) = log f p( ) + log g d|p( )
P,D

 

= log f p( )
P

log g d|p( )
P,D

 

= H P( ) + H D|p( )
P

 

= H P( ) + H (D | P) , 

as was to be shown. 
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