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Abstract: This paper investigates the impact of fast parameter identification methods, which do not require any forward 

simulations, on model-based glucose control, using retrospective data in the Christchurch Hospital Intensive Care Unit. 

The integral-based identification method has been previously clinically validated and extensively applied in a number of 

biomedical applications; and is a crucial element in the presented model-based therapeutics approach. Common non-linear 

regression and gradient descent approaches are too computationally intense and not suitable for the glucose control appli-

cations presented. The main focus in this paper is on better characterizing and understanding the importance of the inte-

gral in the formulation and the effect it has on model-based drug therapy control. As a comparison, a potentially more 

natural derivative formulation which has the same computation speed advantages is investigated, and is shown to go un-
stable with respect to modelling error which is always present clinically. The integral method remains robust. 

1. INTRODUCTION 

 Therapy guidance using physiological models is a grow-

ing trend in bio-engineering [1-8]. In general, the idea is to 

use parameter identification to identify patient specific pa-

rameters then use these parameters to predict future dynam-

ics, and in particular, individual patient response to therapy. 

For example, glucose control in the intensive care unit 

(ICU), has been dramatically improved by using a glucose-

insulin model to optimize insulin doses and changes of nutri-

tion [2, 9-14]. A glucose control protocol SPRINT (special-

ized reduced insulin nutrition table) has changed clinical 

practice in the Christchurch Intensive Care Unit [14]. The 

result is tight control of blood glucose with a 32% mortality 

reduction. Parameter identification is thus an important part 

of the overall process, as the identified parameters affect the 

overall therapy prediction. There are many methods for pa-

rameter identification, most of which are some variation of 

the standard non-linear regression [15]. These methods in-

clude gradient descent [16, 17], Bayesian with many starting 

points [18, 19] and hybrid approaches [20, 21]. 

 The problem with these standard non-linear regression 

approaches is that they all typically require many forward 

solutions and starting points to ensure robustness. In a 

model-based therapeutics approach [2, 9-14] parameter iden-

tification can occur every 1-2 hours over periods of up to one  

 

 

*Address correspondence to this author at the Department of Mechanical 

Engineering, University of Canterbury, Private Bag 4800, Christchurch, 

New Zealand; E-mail: Chris.Hann@canterbury.ac.nz 

or several weeks, for many patients. A Monte Carlo method, 

taking into account sensor error and error in fixed population 

parameters to optimize therapy selection, also significantly 

increases the number of parameter identifications required 

each time. Similar Monte Carlo approaches to optimizing 

such protocols in a virtual patient simulated trial [10, 14, 22] 

are also computationally intense for the same reasons. 

 An integral-based parameter identification method has 

been developed [23] and extended to other physiological 

systems [24-27], that avoids the need for any forward simu-

lations. It can thus dramatically reduce the computation re-

quired. These integral methods are therefore well suited to 

model-based control applications requiring real-time parame-

ter identification. For example, agitation sedation control 

[28, 29], fluid therapy and inotropic drug administration for 

improved cardiac management [25] and control of neuro-

muscular blockade in general anaesthesia [21, 30]. This pa-

per investigates different computationally fast formulations 

that don’t require forward simulations and in particular ex-

amines the impact of these methods on physiological model-

based glucose control. 

 These issues are illustrated and tested with respect to 

noise and modelling error using an exemplar glucose-insulin 

model that has been extensively validated over many clinical 

trials [2, 9-14, 22, 23, 31-40]. The glucose-insulin model and 

methods are tested using retrospective clinical data. Several 

practical issues that arise in clinical implementation are ad-

dressed, to highlight issues of performance and stability. 

 Finally, a new model-based control method for metabolic 

control is presented, that combines a non-invasive continu-
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ous glucose sensor (CGMS) [41] with current standard glu-

cometer sensors [42]. This method is shown to provide a 

potentially significant improvement in glucose control in 

simulation that warrants further clinical investigation in the 

future. 

2. METHODOLOGY 

2.1. Glucose-Insulin Model 

 The glucose-insulin model is defined [11-13, 23]: 

   

G = p
G
G S

I
(t)G

Q

1+
G
Q

+ P           (1) 

 
Q = k(Q I )             (2) 

 

I = nI +
u

V
            (3) 

  
P = P(t) + p

G
G

E
           (4) 

where G(t) is the plasma glucose concentration (mmol/L); 

GE the equilibrium level of plasma glucose concentration 

(mmol/L); Q(t) the interstitial insulin; I(t) the concentration 

of the plasma insulin above basal level (mU/L); P(t) the ex-

ogenous glucose infusion rate (mmol/(L min)); u(t) the insu-

lin infusion rate (mU/min); V the assumed insulin distribu-

tion volume (L); n the delay in interstitial transfer of insulin 

(min
-1

); pG the fractional clearance of plasma glucose at ba-

sal insulin (min
-1

); SI the time-varying insulin sensitivity 

(L/mU min); k the parameter controlling the effective half 

life of insulin (min
-1

); and G  the Michaelis-Menten pa-

rameter for glucose clearance saturation. For more details on 

the construction and physiological interpretation of the 

model Equations (1)-(3) see [11-13, 23]. 

2.2. Parameter Identification 

2.2.1. Integral Method 

 For the glucose-insulin Equations (1)-(3), a similar inte-

gral-based parameter identification method to [23] is applied. 

The parameters G , k, n and pG in Equations (1)-(3) are held 

constant at the population values based on prior studies and 

sensitivity analysis [23]: 

G =
1

65
, k = 0.0099, n = 0.16, pG = 0.01          (5) 

 Similarly, the parameter GE is held at the mean glucose 

of each patient. The nutritional carbohydrate input appear-

ance rate, P(t) in Equations (1) and (4) is also held constant, 

but may change with respect to time for different patients. 

The exogenous insulin u(t) is defined: 

u(t) = uI + uB , 0 t 1

= uI , 1 t 60
            (6) 

where uI (mU/min) is the constant infusion rate over 1 hour 

and uB (mU/min) is the amount of bolus given over one min-

ute. The parameter SI is insulin sensitivity and is assumed 

unknown. Integrating Equation (1) from 0 to t yields: 

  
G(t) G(0) = p

G
Gdt S

I
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0
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0

t

0
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        (7) 

Q =
Q

1+ GQ
            (8) 

 Choosing n values of time, 
 
t = t1,…, tn , [0, 60],  where 

 
0 < t1 < < tn , a set of n equations are formulated: 

   
G(t

i
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where Q(t) is defined in Equation (8). To avoid any error in 

G(0) potentially propagating through the equations, G0 = 

G(0) is assumed unknown and is identified along with SI. 

Equations (9) can be written as a matrix system: 

   

QGdt
0

t
1

1

QGdt
0

t
n

1

S
I

G
0

=

G(t
1
) p

G
Gdt

0

t
1

+ Pdt
0

t
1

G(t
n
) p

G
Gdt

0

t
n

+ Pdt
0

t
n

  (10) 

where G is a continuous approximation to the measured 

glucose [23] and the integrals are evaluated by the trapezium 

rule. Equation (10) can be solved by linear least squares to 

determine SI as a constant over any period. Thus, 
 
S

I
 may be 

identified as piecewise constant. 

 For glucose control in the Intensive Care Unit (ICU), 

Equation (1) is utilized over periods of 1 hour [11, 13] and 

glucose is measured on the hour. For two glucose measure-

ments G0 = G(0) and G60 = G(60) , the function G(t) in 

Equation (10) can be approximated by a straight line [23]. 

For a given infusion uI or bolus uB in Equation (6), 

nutritional input P(t) and glucose measurements G0 and G60, 

the solution to Equation (10) determines the required insulin 

sensitivity. However, note that a similar approach could be 

used if glucose is measured more frequently. 

2.2.2. Similar Approach with the Derivative 

 A similar, potentially simpler, approach to the parameter 

identification of Equations (7)-(10) is to use the original 

differential Equations (1)-(3), rather than an integral 

formulation. For a given set of values, 
 
t = t0 ,…, tn , n+1 

equations can be formulated: 

   
G(t

i
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G
G(t

i
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I
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i
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i
) + P, i = 0,…, n       (11) 

where t0=0. The analogous matrix system to Equation (10) is 

defined: 
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where 
 
G(ti ) are determined by standard finite differences. 

Equation (12) can be solved by linear least squares to deter-

mine SI. 
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 This method applies gradients which is similar in concept 

to typical gradient descent methods. The major difference is 

that no forward simulations are required so like the integral 

method [23] it is a computationally fast way of identifying 

large numbers of 
 
S

I
or other time-varying parameters. 

2.3. Controlling Drug Delivery 

 For the control of blood glucose G(t) in Equation (1), 

measurements are assumed to be taken every hour with a 

normally distributed absolute error of 7%, which is typical 

for a commercial glucometer [42]. Model-based control of 

glucose typically starts by taking two measurements G0 and 

G60 at the times 0 and 60 minutes and computing the insulin 

sensitivity SI from Equation (10). The goal is to determine 

the required insulin infusion uI or bolus uB in Equations (1) 

and (6) that will bring glucose down to a target value Gtarget 

in the next hour. 

 Let SI,1 be the solution of Equation (10) that determines 

the insulin sensitivity in the first hour. Define SI,2 as the insu-

lin sensitivity in the second hour. In the ICU a patient’s con-

dition can change rapidly as a result of a disease state or drug 

therapy. Therefore, SI can change significantly over time [2, 

23]. Given SI,1 in the first hour, it is thus possible that SI,2 in 

the second hour may have changed. An approximation to the 

insulin sensitivity SI,2 in the second hour for predicting po-

tential outcomes of an intervention at the end of hour 1, is 

defined SI ,2 = SI ,1 . As long as the true SI,2 doesn’t change 

significantly from SI,1, this value SI ,2 can be used to deter-

mine the insulin control input u(t) in Equation (1) that will 

bring the glucose to the target value of Gtarget. Any signifi-

cant changes will induce increasingly, unavoidable errors in 

the prediction. 

 First assume that 0=
B
u in Equation (6) and that only 

constant insulin infusion in the second hour is used. An ex-

ample is given in Fig. (1), which includes a “true” glucose 

response to an infusion of uI = 2  units over 1 hour with a 

nutritional input of P(t) = 0.03mmol/L/min. Insulin sensi-

tivity SI ,1 = 0.0008  (L/mU min), SI ,2 = 0.001 (L/mU min), 

GE=4.5 mmol and the rest of the parameters in Equation (1) 

are given in Equation (5). The “measurement” points G0=8 

and G60=7.26 are denoted by crosses (+) in Fig. (1) and the 

target glucose Gtarget=5 mmol/L is denoted by a circle (o). No 

noise is added. 

 For simplicity, it is assumed that SI is precisely known in 

the first hour. In practice, either the solution to Equation (10) 

or Equation (12) would approximate SI . Assuming that 

SI ,2 = 0.0008  in the second hour, the goal is to find the infu-

sion uI  such that the numerical solution G(t) to Equation (1) 

with SI=SI,2, and initial conditions, {G(0)=G60, Q(0)=Q60, 

I(0)=I60} satisfies G(60)=Gtarget. The values of Q60 and I60 are 

determined by the evaluating the numerical solution to Equa-

tions (2)-(3) at   t = 60 . Note that without loss of generality, 

the time at the beginning of drug intervention is assumed to 

be at 0 minutes and the target value is assumed to be at 60 

minutes. 

 

Fig. (1). Controlling glucose to a target value of Gtarget=5 mmol/L. 

The true
 
S

I
in the first and second hours are defined as 

  
S

I ,1
= 0.0008  and 

  
S

I ,2
= 0.001  (L/mU min). 

 To determine uI, Equation (1) is solved numerically for a 

range of infusion values uI, and the resulting end glucose 

value is compared to the target value. The end glucose value 

is represented as a function 
  
G

target
(u

I
) , and is defined: 

  
G

target
(u

I
) = G(60), G solution of Equations (1)-(3) with 

  
u(t) = u

I
          (13) 

 The correct 
 
u

I
is denoted 

  
u

I ,target
and is defined: 

  
u

I ,target
u

I
: G

target
(u

I
) = G

target
        (14) 

where 
  
G

target
(u

I
) is defined in Equation (13). Define the 

points: 

  
u

I ,i
= (i 1), i = 1,…,7 G

target ,i
= G

target
(u

I ,i
), i = 1,…,7  (15) 

where 
 
u

I
 is treated as a variable on the y axis. Fig. (2) 

shows the points 
  
{(G

target ,1
,u

I ,1
),…, (G

target ,7
,u

I ,7
)}  plotted as 

crosses (+). A cubic spline is then fitted to the data, which is 

shown as the solid line in Fig. (2). Evaluating the cubic 

spline at 
 
G

target
 in Fig. (2) allows a good approximation to 

  
u

I ,target
 of Equation (14) with only 4 numerical solutions of 

Equations (1)-(3) required. This overall method for 

determining 
  
u

I ,target
 of Equation (14) is summarized in Fig. 

(3). 

 For this example, the target infusion was calculated to be 

  
u

I
= u

I ,target
= 3.27 U . The resulting glucose response with 

 
S

I
 held constant at the approximate value of 0.0008 L/mU 

min is denoted by a dashed line in Fig. (1). This approximate  
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Fig. (2). Plotting the points 
  
{(G

target ,1
,u

I ,1
),…, (G

target ,7
,u

I ,7
)}  

from Equation (16) and fitting a cubic spline to determine 
  
u

I ,target
 

in Equation (14). 

glucose response hits the target 
 
G

target
 as required. However, 

the “true” glucose response, which comes from using the 

output infusion 
  
u

I ,target
 in Fig. (2) with the true value of 

  
S

I ,2
= 0.001 , slightly undershoots 

 
G

target
 in Fig. (1). The end 

result in this case is still accurate, with an error of 8%. In 

practice both noise, modelling error and natural variation in 

 
S

I
 can effect the accuracy of hitting the target glucose and is 

investigated in detail in the results. 

2.4. Forward Simulation Based Methods and Summary 

 The most common approach to parameter identification 

as discussed in the introduction are methods that rely on 

many forward simulations. A standard non-linear regression 

least squares (NRLS) gradient descent algorithm was tested 

rigorously in [23]. Assuming a reasonable starting guess, the 

NRLS method was thousands of times slower than the 

integral method of [23]. Furthermore, local minima’s were 

often found so that the best insulin sensitivity estimate 

I
S was not always found. 

 The problem of local minima’s in NRLS can always be 

corrected by starting at many starting points, like the method 

of Cobelli [19]. However, this dramatically increases the 

number of forward simulations. For example in [23], the 

integral method was 1000 times fast than the NRLS 

algorithm which started from one initial guess. If 10-100 

starting points were used for the NRLS algorithm, which is 

quite typical to ensure accuracy (e.g. Cobelli [19]), the 

integral method would be 10000-100000 times faster than 

NRLS. The speed gain increases even further as the 

complexity of the model and number of fitted parameters 

increase, for example a cardiovascular model (e.g. [24, 26]). 

 For a model-based therapeutics approach [2, 9-14], the 

large number of forward simulations required in the NRLS 

approach is extremely costly, and is not feasible to imple-

ment. Note that an NRLS approach could be applied in the 

model-based control examples of this paper, and would give 

similar results to the integral method, but it comes at a con-

siderable computational cost. Therefore, since the model-

based therapeutics approach requires minimal computation, 

this paper focuses entirely on methods that do not require a 

forward simulation. The two methods considered are the 

derivative method of Equations (11) and (12) and the inte-

gral method of Equations (7)-(10). 

Fig. (3). An algorithm summarizing the method of model-based 

glucose control which determines the required insulin infusion that 

brings the blood glucose to a predetermined glucose target 
 
G

target
. 

Similar approaches can be used in appropriate time frames or 

intervals for any drug therapy that is similarly modelled with 
differential equations. 

 The derivative approach is a commonly used concept, for 

example in gradient descent algorithms, and would therefore 

most likely be the more easily understood and derived 

method. It is also perhaps, a more natural way of proceeding, 

since the original differential equation model is written in 

terms of derivatives. Therefore, the derivative approach at 

first sight would appear to be the simplest to implement and 

potentially a reasonable way of avoiding forward simulations 

in the parameter identification part of the model-based 

control algorithm of Fig. (3). 

 However, as is shown in the results, the integral 

formulation, which in general is perhaps a less known and 

accepted way of representing a differential equation model; 
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is in fact fundamental for reliable results. This phenomenon 

was also investigated in a related approach to parameter 

identification of a minimal cardiac model on clinical 

pulmonary embolism animal data [26], where even with 

perfectly smooth, model generated signals, a derivative 

approach went unstable. The integral approach on the other 

hand remained stable. 

 Hence, the main aim of this paper, is to investigate the 

effect of the two fast parameter identification integral and 

derivative based methods on the glucose-insulin model; and 

to better explain the importance of the integral in the 

formulation. Most importantly, this study is done in the 

context of model-based therapeutics and glucose control in 

the Christchurch Hospital Intensive Care Unit. 

3. RESULTS AND DISCUSSION 

 This section reviews the implementation of the integral 

method for long term model-based glucose control and 

compares the method with the similar approach that is based 

on the derivative. It thus contrasts the difference in using 

integrals and derivatives for this type of bio-engineering 

inspired parameter identification. The robustness of each 

formulation is investigated with respect to measurement 

noise and modelling error, intervention period, and number 

of measurements used. 

3.1. Glucose control in the Christchurch ICU 

 The glucose control protocol SPRINT [9, 10, 14, 32] is 

now used extensively in the Christchurch ICU. One of the 

keys to the success of SPRINT is the significant testing of 

model-based glucose control algorithms on “virtual” patients 

prior to implementation. The major physiological variable 

that is used to represent a “virtual” patient profile is the time 

varying insulin sensitivity 
  
S

I
= S

I
(t)  profile in Equation (1) 

that can be identified from retrospective data. 

 The integral-based parameter identification method [23] 

allowed fast and accurate insulin sensitivity profiles to be 

constructed for long term patient data. These profiles 

allowed an accurate physiological representation of a 

patient’s metabolic dynamics over periods of up to 1-2 

weeks [23], and were a fundamental element in the 

development of SPRINT [9, 10, 14, 32]. 

 The insulin sensitivity profiles provide a means to 

simulate physiologically realistic time varying glucose 

response to different insulin and nutrition regimes. This 

approach thus provides a repeatable cohort for easy 

comparison of various protocols. It also gives insight into 

long term clinical performance, and, importantly, lets 

algorithms and methods be tested safely before clinical 

implementation. 

 Fig. (4) shows a comparison of the “virtual clinical trials” 

versus the clinical data from the SPRINT trial in the 

Christchurch ICU for the first 16,000 clinical measurements 

and 24,000 hours of control. The distributions for the 

“virtual trials” are very close to both the raw SPRINT data 

and a lognormal fit of the data. The results of the virtual 

patient trials of other protocols [43-45] (not shown) also 

match their reports. The tightness of the SPRINT results and 

good correlation of other protocols serves as a significant 

validation of the methods and approach. 

Fig. (4). A comparison of the virtual trials approach and real 

clinical ICU results from SPRINT. Also shown are virtual patient 

simulations of two other well known protocols, Van den Berghe 
[46] and Krinsley [47]. 

 To further illustrate the impact of SPRINT, Fig. (5) 

shows a patient on SPRINT compared to a patient on a 

previously implemented clinical sliding scale in the 

Christchurch ICU. The measurements in both Fig. (5a) and 

(5b) are taken every hour, but the SPRINT patient is 

significantly better controlled than the patient on the original 

standard sliding scale. Note that the SPRINT patient also has 

2-4 potentially contaminated measurements but still provides 

better control to a 4-6.1 mmol/L or similar target band than 

the retrospective data patient who is less acutely ill by 

APACHE II score. 

3.2. Parameter Identification – Integral Versus 

Derivative 

 For ease of reference in this section and the following 

sections, Equations (7)-(10) are referred to as the Integral 

Method and Equations (11)-(12) are referred to as the 

Derivative Method. The methods are derived from the same 

set of differential Equations (1)-(3). Therefore, if no noise is 

present, it may be reasonable to suggest that they should 

perform equally well when identifying 
 
S

I
. In addition, 

neither requires the forward simulation used in most typical 

identification approaches. To test this assumption, the 

following set of parameters is considered: 

  

P = 0.08 mmol/(Lmin), U
i
=

100

3
mU/min,

U
b
= 0, S

I
= 0.0001 L/mU min

      (17) 

 “Measured” glucose values at   t = 0  and   t = 60  are 

generated by numerically solving Equations (1)-(3) for 

various values of 
 
G

E
, and initial conditions 

  
Q

0
 with a fixed 

initial glucose of 
  
G

0
= 5 mmol/L . Two main parameters sets 

are considered: 

  
G

E
= 4.5 mmol/L, 0 Q

0
20 mU/L        (18) 

 SPRINT 
clinical data 

and fitted 
 log normal SPRINT 

simulation 
Van den Berghe 

Krinsley 
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Q

0
= 8 mU/L, 3 G

E
15 mmol/L         (19) 

 In Equation (18), 
  
Q

0
 is varied in steps of 1 mU/L and in 

Equation (19), 
 
G

E
 is varied in steps of 1 mmol/L. Figs. (6) 

and (7) show the results of the identified 
 
S

I
 using the inte-

gral and derivative methods for each parameter set of Equa-

tions (18) and (19). 

 

Fig. (6). The identified insulin sensitivity 
 
S

I
 for the integral 

method of Equations (7)-(10) and derivative method of Equations 
(11)-(12) for the parameter set of Equation (18). 

 

Fig. (7). The identified insulin sensitivity 
 
S

I
 for the integral 

method of Equations (7)-(10) and derivative method of Equations 
(11)-(12) for the parameter set of Equation (19). 

 Fig. (6) shows that for 
  
Q

0
< 5 mU/L  the derivative 

method gives an 
I
S value that is significantly different from 

the true value. In fact it becomes non-physiological and 

negative for 
  
Q

0
= 0 and 1 . The integral method, in contrast, 

remains stable. Fig. (7) shows a similar result with the de-

rivative method rapidly diverging after 
  
G

E
= 4 mmol/L , and 

the integral method staying virtually constant. 

Fig. (5). (a) A patient (Patient 130) on a typical sliding scale before the use of SPRINT in the Christchurch ICU. APACHE II score = 11. (b) 
A patient (Patient 5005) on SPRINT in the Christchurch ICU. APACHE II score = 21. 
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 The scenarios of Figs. (6) and (7) can be realized in prac-

tice whenever the insulin is cut off, so that Q(t) reaches low 

levels, followed by an increase of carbohydrate input (see 

example to follow). In particular, a negative 
 
S

I
 would occur 

whenever the true 
 
S

I
 is sufficiently low, so that the typical 

undershooting that occurs with the derivative method goes 

less than zero, as the example in Fig. (6) demonstrates. 

3.2.1. Model-based Glucose Control Example – Minimizing 

Insulin Infusion 

 To demonstrate the results of Figs. (6) and (7) in a clini-

cal setting, a patient from the retrospective cohort of [23] is 

considered. The patient used is Patient 554, who was a fe-

male aged 20; type 1 diabetic; medical subgroup – Other 

Medical; APACHE II score - 26. Seven hours of data is ana-

lyzed, and Fig. (8) shows the time-varying insulin sensitivity 

for this period taken from [23]. Patient 554 also has the pa-

rameters: 

  
G

E
= 4.5 mmol/L and G

0
= 5.4 mmol/L   (20) 

and all the other parameters are defined in Equation (5). 

 

Fig. (8). Time varying insulin sensitivity for Patient 554 from the 
retrospective cohort [23]. 

 To begin the model-based control algorithm of Fig. (3), 

two glucose values are required in the first hour. These val-

ues are generated by solving Equations (1)-(4) with the pa-

rameters of Equation (5) and (20); an insulin infusion input 

of 
  
u

I
= 0.5 U , u

B
= 0  for 

  
u(t)  in Equation (6); and initial 

conditions for insulin defined, by 
  
I

0
= 1  mU/min, 

  
Q

0
= 1  

mU/min. The target glucose in Step 4 of Fig. (3) is 

  
G

target
= 5 mmol/L . Additional constraints for this example, 

are that the use of exogenous insulin 
 
u

I
 is minimized and is 

only in steps of 0.5 U, and that when possible, the carbohy-

drate input 
  
P(t) , is the primary controller with a resolution 

of 0.01 mmol/L/min. Finally, it is assumed that for hour 6 

the feed is increased to 0.06 mmol/L/min. 

 The identified insulin sensitivity for each of the deriva-

tive and integral methods is shown in Fig. (9), along with the 

true insulin sensitivity of Fig. (8). Notice that even without 

noise, both parameter identification methods deteriorate at 

hours 5 and 6, but the integral method is the most accurate. 

The absolute percentage errors of the methods for hours 1-6 

in Fig. (9) are: 

  

error
derivative

= 1.3, 10.5, 5.6, 0.4, 34, 55.2 (%)

error
integral

= [3.5, 6.9, 3.0, 0.8, 19.7, 13.0] (%)
      (21) 

 This deterioration is a result of low insulin levels which 

progressively removes the effect of 
 
S

I
 on the glucose re-

sponse, and thus the large errors in 
 
S

I
 have a negligible ef-

fect on glucose control, which is shown in hours 1-6 of Fig. 

(10). This state of no insulin and very little carbohydrate 

input, of course could not be sustained for any significant 

period of time, as the patient would face malnutri-

tion/starvation. Thus, the feed is increased at hour 6. 

Fig. (9). The identified insulin sensitivity values for the derivative 

and integral methods compared to the true insulin sensitivity for 
Patient 554. 

 There is no reliable insulin sensitivity value from the 

prior hour due to the very low insulin levels. Therefore, a 

conservative infusion of 0.5 mmol/L/min is applied at hour 6 

to identify insulin sensitivity so that the algorithm of Fig. (3) 

can be applied accurately in the following hour. Fig. (9) and 

Equation (21) show that the integral method identifies the 

insulin sensitivity quite accurately at hour 6 with an error of 

13.0%, where the derivative method has a much larger error 

of 55.2%. 

 However, the significant under prediction of insulin sen-

sitivity for the derivative method dramatically affects con-

trol. Fig. (10) shows that control in hour 7 for the derivative 

method is poor, with a 5.5 mU bolus predicted and an unde-

sirable, and potentially dangerous, hypoglycaemia event of 

3.61 mmol/L. This result corresponds to an error of 27.8% in 

the target glucose. On the other hand, the control based on 

the integral method is good with a final glucose value of 4.83 

mmol/L, which corresponds to a 3.4% error. The results of 

Figs. (9) and (10) further confirm the observations of Figs. 

(6) and (7). 

 Note that the scenario of Fig. (10) is not uncommon in 

critical care and for the extended retrospective data set given 
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in Shaw et al. [48], can occur several times daily. Therefore, 

the integral method allows more flexibility in the control 

protocol by not requiring insulin infusion to be on con-

stantly, and is robust to sudden increases in the carbohydrate 

input. 

 

Fig. (10). Model-based glucose control using the algorithm of Fig. 

(3), with the added constraint of minimizing the exogeneous insu-
lin. 

3.2.2. Model-Based Glucose Control – Constant SI 

Approximation 

 To further test the methods for a longer period and to 

demonstrate the practical, clinical issues associated with 

model-based control, another patient from the retrospective 

data of [23] is used. The patient is Patient 519, who was a 

male aged 69; type 2 diabetic; medical subgroup - General 

Surgical; APACHE II score - 29. The integral and derivative 

methods are compared based on a constant 
 
S

I
, which is 

taken to be the mean 
 
S

I
 of patient 519. Similarly, the pa-

rameters 
  
P(t)  and 

 
G

E
 in Equations (1)-(4) are set constant 

at the mean nutritional input and mean glucose respectively 

of patient 519. The numerical values of the parameters are 

thus defined: 

  
S

I
= 9.28 10

4
L/mU min , 

  
P(t) = 0.049  mmol/(Lmin), 

  
G

E
= 5.84  mmol/L         (22) 

 The rest of the model parameters are defined in Equation 

(5). Data for the first 3 days of patient 519 is used to test the 

predictive model-based glucose control of Fig. (3). Note that 

the protocol of minimizing the insulin, which was imple-

mented in Fig. (9), is not used. 

 To begin the model-based control algorithm of Fig. (3), 

two glucose values are required in the first hour. These val-

ues are generated by solving Equations (1)-(4) with the pa-

rameters of Equation (22); an insulin infusion input of 

  
u

I
= 1 U , u

B
= 0  for 

  
u(t)  in Equation (6); and initial condi-

tions of 
  
G

0
= 11.5  mmol/L, 

  
I

0
= 0  mU/min, 

  
Q

0
= 0  

mU/min. The target glucose in Step 4 of Fig. (3) is defined: 

  
G

target
= max{G

0
1,5}          (23) 

where for each consecutive hour the initial conditions 
  
G

0
, 

  
I

0
 and 

  
Q

0
 are taken as the previously calculated 

  
G

60
, 

  
Q

60
 

and 
  
I

60
, as detailed in Step 2 of Fig. (3). Equation (23) en-

sures the reductions in glucose are not too large which clini-

cally, may be undesirable for the patient. 

 Every hour that the algorithm of Fig. (3) is applied, a new 

infusion 
  
u

I ,target
 is defined for the next hour, which in turn 

defines a new glucose response, and so on as long as re-

quired. In this example, the final time is at 3 days or 72 

hours, which gives 71 intervention periods since the first 

period is just a fitting period. Importantly, the size of the 

infusion cannot be greater than 6 Units [11, 13] for patient 

safety. To be physiologically realistic it must be also greater 

than 0. Therefore, the infusion 
  
U

I ,target
 in Fig. (3) is con-

strained: 

  
0 U

I ,target
6U           (24) 

 The results of the algorithm of Fig. (3) for the integral 

method of Equations (7)-(10) are shown in Fig. (11a), where 

7% uniformly distributed noise is placed on the hourly glu-

cose measurements to mimic the sensor error in the glu-

cometer [11, 13, 23]. All measurements in Fig. (11a) lie in 

the 4-6.1 mmol/L band showing that very tight glucose con-

trol is achieved when 
 
S

I
 is constant. Fig. (11b) shows the 

results of using the derivative method of Equations (11)-(12) 

in place of the integral method in Step 3 of Fig. (3). Again 

all measurements lie in the 4-6.1 mmol/L band, showing 

there is virtually no difference between the methods. 

 The result of Figs. (11a,b) shows that for Patient 519, the 

parameter regimes of Equations (18) and (19) that caused 

instability for the derivative method in Figs. (6) and (7), 

were not realized. The mean value of 
  
Q(t)  during this “vir-

tual trial” of patient 519 was 16.5 mU/min. Examining Fig. 

(6), it can be seen that for these relatively high 
  
Q(t)  values 

the derivative and integral methods behave similarly. 

3.3. Model-Based Glucose Control – Time Varying 
 
S

I
 

 The results of Fig. (11) show that with continual insulin 

infusions over time the derivative and integral methods per-

form similarly in glucose control with hourly measurements 

of glucose. Therefore, since the main differences in control 

have already been investigated in Fig. (10), the comparison 

of the derivative and integral methods is discontinued in this 

section. 

 The insulin sensitivity profile of Patient 519 as fitted in 

[23] is highly dynamic, and the first three days are shown in 

Fig. (12). To demonstrate the practical aspects of model-

based glucose control, the algorithm of Fig. (3) is applied to 

the time varying 
 
S

I
 of Fig. (12) using the integral method. 

Note that in [38, 39] and Lin 2007 [49], the integral method 

has been well validated and proven for extensive numbers of 
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virtual patients, therefore no further patients other than Pa-

tient 519 are tested in this paper. 

 

Fig. (11). (a) Algorithm of Fig. (3), with the integral method of 

Equations (7)-(10)used in Step 3. (b) Algorithm of Fig. (3), with the 
derivative method of Equations (11)-(12) used in Step 3. 

 The nutritional input 
  
P(t)  is again held constant with all 

other parameters the same as given in Equations (5) and  

(22). 

 

Fig. (12). Time varying 
 
S

I
 profile over first 3 days for patient 519. 

 Fig. (13) gives the result for the integral method, which 

shows that glucose control is significantly worse than Fig. 

(11). The mean glucose and standard deviation of  5.58 ±1.03  

mmol/L with 67.57% of glucose values lying in the 4.0 to 

6.1 mmol/L band. Very similar results are obtained for the 

derivative method, so these results are not shown. 

 The reason for this decrease in performance is explained 

by the insulin infusion graph of Fig. (14). There are signifi-

cant periods in Fig. (14) where the insulin has reached the 

maximum of 6 Units/hour so effectively no added, but nec-

essary, control is being applied in these periods and insulin 

effect is saturated [2, 36]. The solution to this problem has 

been to vary the nutrition, as well as the insulin [9, 10]. A 

fully developed and validated method for modulating both 

the nutrition and insulin in a model-based glycemic control 

system is detailed in [13, 14]. 

 To demonstrate the essential concept the nutrition is 

dropped to 40% of the original value, whenever the insulin 

hits the upper limit of 6 units. A new insulin infusion is then 

calculated in Step 4 of Fig. (3) for this reduced nutrition. 

This simple rule results in a significant improvement in glu-

cose control as shown in Fig. (15). The mean glucose is 

 5.32 ± 0.67  mmol/L with 76.14% of values lying between 4 

and 6.1 mmol/L. 

 

Fig. (13). Model-based glucose control with the time varying 
 
S

I
 of 

Fig. (12) and a fixed nutritional input given in Equation (22). 

 

 

Fig. (14). Control infusion input 
  
u

I ,target
 in Step 4 of Fig. (3), for 

the model-based glucose control of Fig. (13). 

3.4. Combining CGMS with Glucocard Measurements 

 To demonstrate a new clinical application of the methods 

presented and to further investigate the comparison of the 

integral versus derivative approaches, a CGMS sensor is 

included in the model-based glucose control algorithm. The 
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CGMS sensor measures glucose every 5 minutes with a 

measurement error that can be approximated by the formula 

[34]: 

  
G

noise
= (1+ 0.18 )G

true
,  normal distribution 

 
(μ = 0, = 1)           (25) 

 Equation (25) gives a mean absolute error of 14%, which 

is typical for CGMS sensors [41, 50]. 

 

Fig. (15). Model-based glucose control with the time varying 
 
S

I
 of 

Fig. (12) and a simply varying nutritional input. 

 Blood glucose is still assumed to be measured hourly 

with a glucocard and 7% uniformly distributed noise in addi-

tion to the CGMS for comparison. To account for the extra 

noise in the CGMS and to give the greatest chance for an 

averaging effect on the errors, insulin sensitivity
I
S is fitted 

over the prior 1  hours rather than 1 hour, as was presented 

in Fig. (3). The intervention period is also shortened to  

hour to take advantage of the extra measurements from 

CGMS. The 1  hour periods ensure that 2 glucocard meas-

urements will always be available to fit 
 
S

I
 when stepping 

along each interval of  hour. 

 The same algorithm of Fig. (3) is applied, except the in-

tegral and derivative methods are implemented over the 

longer 1  hour period and the infusion 
  
U

I ,target
 in Step 4 of 

Fig. (3) is updated every  hour. A further change that is 

made is that 7% low frequency modelling error is added to 

the glucose measurements, as well as the normally distrib-

uted error in Equation (25). The final expression for noise is 

thus defined: 

  

G
noise

= (1+ 0.18 ) 1 0.07 cos
2

82
t G

true
      (26) 

 Equation (26) reflects the fact that a higher resolution in 

measurements, trades off with both a higher amount of sen-

sor error and importantly, modelling error. 

 The modelling error is caused by potentially missed dy-

namics in the glucose-insulin model of Equations (1)-(3). 

Simple oscillations are used as an initial proof of concept 

since low frequency oscillations have been often observed in 

both glucose and 
 
S

I
 [23]. However, further work must be 

done on real CGMS data to fully characterize the tradeoff’s 

in the error. 

 Fig. (16) shows the resulting glucose control for Patient 

519 using the same parameters as used for Fig. (15). A sig-

nificant improvement can be seen with a mean glucose of 

 5.03± 0.42  mmol/L and 98.55% of glucose values lying 

between 4 and 6.1 mmol/L. 

 Fig. (17) shows the first 12 hours of data with both the 

CGMS data and glucocard data plotted against the true glu-

cose. The “true glucose” is denoted by the solid line and in-

cludes the modelling error of Equation (26), but not the sen-

sor error, so that  = 0  in Equation (24). The widely spread 

points are the simulated CGMS data which are plotted every 

5 minutes using the formula in Equation (24) with nor-

mally distributed as given in Equation (23). The circles are 

the simulated glucocard hourly “measurements” which put 

7% random uniformly distributed noise on the “true glu-

cose”. 

 

Fig. (16). Model-based glucose control using the integral method in 

Step 3 of Fig. (3), with the combination of a CGMS sensor and 
glucocard. 

 The derivative method is now used in place of the inte-

gral method in Step 3 of Fig. (3). The same data is used, but 

to potentially assist the derivative method, the data is 

smoothed several times by a 3 point moving average. How-

ever, even with smoothing to remove most of the local noise, 

a significantly worse result is seen in Fig. (18). The mean 

glucose is  5.5 ±1.1  mmol/L with only 64.86% of glucose 

values lying between 4.0 and 6.1 mmol/L. Thus, the deriva-

tive method is unable to take advantage of the extra CGMS 

data, where the integral method gives significantly better 

outcomes on glucose control despite the larger noise distri-

bution for these sensors. The derivative method clearly per-

forms better when there is very minimal modelling error and 

the true glucose is close to a straight line between two points, 

which was the case in Figs. (11,13,15), but does not occur 
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with significant sensor noise and/or modelling error, both of 

which typically exist. 

 

Fig. (17). The first 12 hours (720 minutes) of patient 519, with 

simulated CGMS data shown as points, glucocard “measurements” 

shown in circles and a solid line denoting the “true glucose” which 

includes the modelling error of Equation (26), but not the sensor 
error. 

 

 

Fig. (18). Model-based glucose control using the derivative method 

instead of the integral method in Step 3 of Fig. (3), and with a 
CGMS sensor and glucocard. 

CONCLUSIONS 

 This paper has reviewed the model-based therapeutics 

approach to glucose control that has been developed and put 

into regular use in the Christchurch Hospital, New Zealand 

ICU, and investigated the impact of two different fast pa-

rameter identification methods. The key point with these 

parameter identification methods is that unlike typical non-

linear regression approaches, they do not require any forward 

numerical solutions to identify model parameters. They are 

also not starting point dependent, and thus provide a major  

 

advantage in the implementation of model-based “virtual” 

clinical trials as well as significant real-time capability. The 

two methods considered were a previously developed inte-

gral-based patient specific parameter identification method 

and a similar approach based on the derivative. At first sight 

it might be expected that the integral and derivative ap-

proaches would perform similarly given they are derived 

from the same underlying differential equation model. How-

ever, even without noise significant differences were ob-

served for certain parameter sets and glucose control proto-

cols, with the integral method remaining significantly more 

robust. 

 A number of tests were performed on clinically derived 

data from a patient in the Christchurch ICU. Very little dif-

ferences were observed between the model-based glucose 

control using the integral method compared to the derivative 

method for this patient. This result is due to the fact that the 

insulin levels remained quite constant and high throughout, 

so that the insulin dynamics between measurements were 

minimal. The resulting glucose response was thus very close 

to a straight line with very little modelling error. However, 

when adding extra measurements from CGMS along with 

low frequency modelling error, the derivative method per-

formed very poorly, and had worse results than without the 

CGMS. The integral method on the other hand remained 

robust and gave a significant improvement in glucose con-

trol. 

 The overall results are summarized as follows. 

• The integral formulation in parameter identification is 

very important for robust and reliable results, particu-

larly with respect to modelling error which is always 

present in clinical applications 

• The derivative method is very sensitive to modelling 

error and only works in situations where model re-

sponse is close to a straight line. 

• The combination of the integral method and model-

based drug control is very effective for designing and 

testing new protocols. 

 The integral method is an important research tool in the 

model-based therapeutics approach. For example the addi-

tion of simulated CGMS shows that a potentially significant 

clinical gain could be achieved with this continuous sensor. 

However, further investigation with real CGMS data is re-

quired to validate these results. The derivative method, went 

unstable and failed to realize this possible clinical gain, fur-

ther emphasizing the importance of integrals in the formula-

tion. 
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