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Abstract: Mining information from EMG signals to detect complex motion intention has attracted growing research 

attention, especially for upper-limb prosthetic hand applications. In most of the studies, recordings of forearm muscle 

activities were used as the signal sources, from which the intention of wrist and hand motions were detected using pattern 

recognition technology. However, most daily-life upper limb activities need coordination of the shoulder-arm-hand 

complex, therefore, relying only on the local information to recognize the body coordinated motion has many 

disadvantages because natural continuous arm-hand motions can’t be realized. Also, achieving a dynamical coupling 

between the user and the prosthesis will not be possible. This study objective was to investigate whether it is possible to 

associate the around-shoulder muscles’ Electromyogram (EMG) activities with the different hand grips and arm directions 

movements. Experiments were conducted to record the EMG of different arm and hand motions and the data were 

analyzed to decide the contribution of each sensor, in order to distinguish the arm-hand motions as a function of the 

reaching time. Results showed that it is possible to differentiate hand grips and arm position while doing a reaching and 

grasping task. Also, these results are of great importance as one step to achieve a close loop dynamical coupling between 

the user and the prosthesis. 
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1. INTRODUCTION 

 Mining information from EMG signals to detect complex 
motion intention has attracted growing research attention, 
especially for upper-limb prosthetic hand applications [1]. In 
previous studies, it has been reported that up to 10 wrist and 
hand motions could be recognized from 2-3 channels of 
forearm electromyogram (EMG) [2,3]. Other studies have 
used non-stationary EMG at the beginning of motion [4] or 
mechanomyogram (MMG) as the signal source for the 
motion intention detection [5]. In these studies, motion 
intention of the wrist and hand were detected using patter 
recognition techniques from recordings of forearm muscle 
activities. However, it is difficult to take in consideration the 
body coordinated motions from these signals alone; therefore 
the movement of the artificial limb can be unnatural if 
consider as a part of the whole body, and a dynamical 
coupling between the person and the prosthesis is not 
possible. Also, using forearm muscle activities to drive the 
artificial limb leaves aside the possibility for higher level 
amputees to use the system. 

 It has been shown that most daily-life upper limb 
activities present coordination in the shoulder-arm-hand 
complex. For example, it has been shown that during 
grasping and reaching tasks [6-9], or throwing and catching a 
ball [10], the shoulder, elbow and hands’ trajectory are 
tightly coupled. Also, it has been discussed that this coupling 
is also task and situation dependent, such as reaching and 
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grasping an object in different places and in different 
orientations [11]. 

 It is because of this dependency that research effort had 
been done to differentiate hand motions using EMG activity 
of proximal muscles [12-15]. However, it is still complex to 
classify and interpret the information acquired. C. Martelloni, 
et al., in [12], used a Support Vector Machine based pattern 
recognition algorithm as an attempt to predict different grips, 
trying to reproduce the finding in monkeys described in [14]. 
They were able to discriminated 3 different grips (palmar, 
lateral or pinch grip), but they used data obtained from the 
forearm muscles activities of the flexor carpi radialis and 
extensor carpi radialis, which have been used in the previous 
studies to control prosthetic hands [2-5,16]. Therefore, this 
makes it difficult to determine the contribution the proximal 
muscles to the motion detection of the hand. Also, in [13], 
Xiao Hu, et al. compared the performance of a Scalar 
Autoregresive model with a Multivariate AR modeling for 
multichannel EMG sensors in order to classify upper arm 
movements. Using data obtained from the bicep, tricep, 
deltoid and brachioradialis. They were able to classify 
accurately different arm movements. Although the results are 
encouraging, they focus the attention on the contribution of 
the muscles as a whole, and insights on the contribution of 
individual muscles is lost. Besides they didn’t attempt to 
predict hand positions. Additionally, Y. Koike et al., in [15], 
developed a forward dynamics model of the human arm 
from EMG reading of proximal muscles using neural 
networks, but didn’t attempt to predict hand positions. 

 In this study we wanted to investigate the contribution of 
the around-shoulder muscle activities to the hand and arm 
direction movements, in order to explore the possibility of 
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detecting the person’s intentions in a dynamical way (during 
the reaching process). Experiments were conducted to record 
the EMG signals from the around-shoulder muscles of 
different arm and hand motions, and to analyze the 
contribution of these sites to distinguish different hand and 
arm motions. 

2. METHODS 

2.1. Subjects 

 Four male subjects with age 23.75±2.06 participated in 
the experiments. They were informed about the experimental 
procedures and agreed to sign a written consent. All subjects 
were healthy with no-known history of neurological 
abnormalities or musculo-skeletical disorders. 

2.2. Experimental Setup 

 Subjects were ask to seat comfortably in front of a desk 
and were asked to move their dominant arm from an 
assigned position towards an object, which had to be grasped 
(Fig. 1). To start the trial’s reaching motion the subjects had 
to push a switch button (switch1) with their non-dominant 
hand, while their dominant hand rested in a natural open flat 
position on the desk (start position of each trial). After, with 
their dominant hand they had to reach and grasp the object. 
Before grasping the object completely the subjects were 
required to press another switch button (switch 2) in order to 
finish the trial. 

 Three different object related grip were used during the 
experiments, as shown in Fig. (2). Also, these objects related 
grasps were placed in five different positions relative to the 
subject, as denoted in Fig. (3). The target objects were 

placed in order to allow the maximal elbow extension in all 
five directions (see Fig. 3). Moreover, the height of the chair 
was regulated for each subject in order to obtain an elbow’s 
angle of 90° (maintaining the trunk erected). A self-paced 
speed was allowed for the reaching and grasping tasks. 

 The subjects were asked to reach each object nine times 
for every positions, therefore a total of 135 trials were 
performed by each subject (3 objects X 5 positions X 9 
repetitions). The subjects were able to rest for a few seconds 
between each trial. Also, they were requested not to bend or 
rotate the trunk in order to prevent translational motions of 
the shoulder. Finally, they were asked to execute each grip in 
all different positions. 

2.3. Devices 

 Raw EMG signals were recorded at sampling rate of 
2.0KHz and stored (using National Instrument’s Labview) 
for an off-line data analysis using Matlab. After cleaning the 
skin surface, eight EMG sensors were placed, aiming to 
record the proximal muscles, as indicated by Fig. (4). Also, 
disposable solid-gel Ag-AgCl surface electrodes (Biorode 
SDC-H, GE Yokogawa Medical Systems, Japan) were used. 
The location of each electrode was chosen according to [13] 
and preliminary experiments of our research group, 

2.4. Feature Extraction 

 EMG signals were processed by a 50 Hz high-pass filter 
in order to suppress the motion-related artifact, then 
rectified, and filtered by a 2Hz low-pass filter. The EMG 
signals obtained during the reaching phase were framed 
between the signals of switch 1 and switch 2. After, the 

 

Fig. (1). Trial’s reaching and grasping sequence. a. The dominant hand rests in a flat position on the desk, and a switch button has to be 

pressed with the non-dominant hand. b. The subject reaches for the object. c. When the object is reached, the button had to be pressed before 

grasping completely. 

 

Fig. (2). Grasping tasks. a. Horizontal cylinder grip (g1) b. Vertical cylinder grip (g2) c. Plane surface grip (g3). 
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reaching phase was equally divided into 10 segments. 

 

Fig. (3). Reaching positions. 5 different reaching position were 

used in each trial. 

 For analysis two features were employed. The first 
feature was the mean value (MV), which is expressed by 
equation (1). 

 

MVj =
1

Tj
i i=0

T Sm(ti )            (1) 

where j corresponds to a segment; Sm(ti) is the preprocessed 

EMG at ti; T is the size of each segment; and Tj is the starting 

point the segment. MVj is the mean value for the segment j. 

The second feature employed for analysis was the peak value 

of muscle activation (PVM) of each segment. Both MV and 

PVM were normalized for the further analysis. 

2.5. Method of Analysis 

 For the data analysis a classifier based on K-means was 
used using the features extracted from all 8 channels. This 
method calculates the distance between an input vector and 
the centroid of existing clusters in a segment, then assigns 
the input vector to the cluster to which the distance is 
minimum. Then the cluster will be updated to contain the 
new input. Distance was calculated with the following 
expression. 

x ci
2

i=0

K

            (2)  

 Two kinds of discrimination were tested: 

(i) Discrimination of the object related grip (g1, g2, g3) 
for each final position (p1, p2, p3, p4, p5). We will 
refer to this as: disc_i. 

(ii) Discrimination of the final position (p1, p2, p3, p4, 
p5) for each object related grip (g1, g2, g3). This will 
be referred as: disc_ii. 

 The segment was considered an effective point if 70% of 
the grip or position were correctly classified, otherwise it 
was regarded as an invalid point. Fig. (5a) shows and 
examples of an effective point, and Fig. (5b) shows the 
example of an invalid point for the disc_i data. Furthermore, 

 

Fig. (4). Placement of EMG sensors for this study. 

 

Fig. (5). Examples of an effective and an invalid point of disc_i. a Effective points, b. Invalid Points. 

21° 21°21 21°

30°p5 p2 p4 p3

30°

p2

p1

a. Top View            b. Side View

Sensor 1. The clavicular part of pectoralis major muscle (CPPM).

S 2 A i l t f d lt id l ( t l fib )(APDM)
Sensor 8

Sensor 2. Acrominal part of deltoid muscle(central fibers)(APDM)

Sensor 3. Clavicular part of deltoid muscle (anterior fibers)(CPDM).

Sensor 4. Serratus anterior muscle (SAM).

Sensor 5 Ascending fibers of trapezius muscle (AFTM)

Sensor 3

Sensor 1

Sensor 5

Sensor 5. Ascending fibers of trapezius muscle (AFTM).

Sensor 6. Infraspinatus muscle and infraspinous fascia (IMIF).

Sensor 8. Teres major muscle (TMM).

Sensor 7 Descending fibers of trapezius muscle (DFTM)
Sensor 4

Sensor 2

Sensor 6 Sensor 7

Sensor 7. Descending fibers of trapezius muscle (DFTM).a.                  b

� � � :��������10%�� �� �20Hz
5

� � :��������10%�����20Hz
Example: Invalid PointsExample: Effective Points

4

4.5

5

4

4.5

5

2.5

3

3.5

2.5

3

3.5

C
lu

st
er

C
lu

st
er

5 10 15 20 25 30 35 40 45
1

1.5

2

5 10 15 20 25 30 35 40 45
1

1.5

2

5 10 15 20 25 30 35 40 45
1- 9:Under    10- 18:Middle    19- 27:Up    28- 36:Right    37- 45�Left

5 10 15 20 25 30 35 40 45
1- 9:Under    10- 18:Middle    19- 27:Up    28- 36:Right    37- 45�Left



Classification of Upper Limb Motions from Around-Shoulder Muscle Activities The Open Medical Informatics Journal, 2010, Volume 4    77 

for both discrimination methods there was a total of 20 
points. 

  After the data was classified, a Tukey-Kramer test was 
performed, as an effective feature selection method, in order 
to decide each sensor's contribution to the discrimination of 
position or grips pairs. This will be further explaining in the 
next section. 

3. RESULTS 

3.1. Using 8 Features 

 Fig. (6) shows the correct rate discrimination of the 
positions for the object related grip g2 (disc_i) of subject C, 
in terms of the reaching time, and using the PVM feature 
from the 8 EMG channels. The x axis corresponds to the 
percentage of the reaching time, were 0% corresponded to 
the moment the first switch was pressed, and 100% when the 
switch in the object was pressed. Since the reaching time 
was divided into 10 segments, each point corresponds to one 
segment. The y axis represents the final reaching position 
been discriminated, and the z axis corresponds to the correct 
discriminated rate. 

 

Fig. (6). Correct rate discrimination of the positions for the object 

related grip g2 (disc_i) of subject C, in terms of the reaching time, 

and using the PVM feature from the 8 EMG channels. 

 It can be observed from the figure that the correct 
discriminated rates for p3 and p4 positions are higher than 
for the other positions, which was also observed in the other 
subjects’ data. It’s shown from the figure that at 90% of the 
reaching time, all the final positions for g2 were recognized 
with high accuracy. Table 1 shows the correct discriminated 
rate for the case presented on Fig. (5). Also, Table 2 shows 
the number of effective points during the trials for all the 
subjects. 

 Fig. (7) shows the correct discrimination rate of the 
object related grip for position p3 of subject C, in terms of 
the reaching time and using the MV feature for the 8 EMG 
channels. Similarly to the figure before, the x axis 
corresponds to the reaching time segments; the y axis 
represents the different object related grip (g1, g2, and g3) 
and the z axis correspond the correct discrimination rate. 

 

 

Table 1. Correct Discriminated Rate for the Case Presented 

on Fig. (5) 

 

Distinguish Rate (%) 
Reaching Time (%) 

p1 p2 p3 p4 p5 

90 100 78 100 100 78 

 

Table 2. Number of the Effective Points for disc_i 

 

Grip Type 
Subject Feature Extraction 

g1 g2 g3 

MV 1 2 3 
A  

PMV 0 1 4 

MV 0 0 0 
B 

PMV 0 0 0 

MV 1 1 0 
C 

PMV 1 0 0 

MV 0 0 0 
D 

PMV 0 0 0 

 

 

Fig. (7). Correct discrimination rate of the object related grip for 

position p3 of subject C, in terms of the reaching time and using the 

MV feature for the 8 EMG channels. 

 It can be noticed from the figure that from 80% of the 
reaching time effective points were found on the 3 types of 
grip. The discriminated rate for 80, 90 and 100% of the 
reaching time can be observed in Table 3. Therefore, for 
subject C, at 80, 90, and 100% of the reaching time position 
p3 was recognized with high accuracy. 

 Also, it was found that the discrimination rate of g3 was 
higher than that the other grips for all the subjects. Table 4 
shows the effective points during the trials for all the 
subjects. 
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Table 3. Correct Discriminated Rate for the Case Presented 

on Fig. (5) 

 

Distinguish Rate (%) 
Reaching Time (%) 

g1 g2 g3 

100 89 100 100 

90 78 100 100 

80 78 100 100 

 

Table 4. The Number of the Effective Points for Disc_ii 

 

Position
Subject

Feature 

Extraction
p1 p2 p3 p4 p5

MV 0 0 3 0 6
A 

PMV 0 3 1 0 3

MV 0 0 0 2 0
B

PMV 0 1 0 2 0

MV 3 0 3 0 0
C

PMV 5 2 5 0 0

MV 4 0 0 0 0
D

PMV 6 0 0 0 0

 

3.2. Selecting Effective Features 

 In order to select the most effective features from the 
data to reduce the data processing load, a Tukey-Kramer test 
was performed. This method allowed us to know the 
contribution of each sensor in order to discriminate position 
pairs. Table 5 shows the results. 

 The effective features were selected by choosing the 
direction pairs with smallest amount of significant difference 
(total_h), which are the most difficult pairs to distinguish. 
Then the sensors that were able to distinguish the selected 
pairs (presented in Table 5 as “O”) and provide the 
discrimination on most of the other pairs was chosen (the 
total significant discriminations of a sensor is shown in the 
row “total_v” in Table 5). Different groupings were tested, 
but the best result was obtained when choosing 4 sensors. 
Certainly, this method is not optimal for the discrimination 
in terms of the candidate number and feature combination, 
however, the general information is sufficient for 
discrimination of all directions (final positions) could be 
expected. 

 Comparisons between the discrimination using the 4 
selected features and 8 features for disc_i were made. The 
effective points whose correct rates were improved are 
shown in Table 6; the unchanged rates in Table 7; and 
decreased rates in Table 8. As can be observed, by using the 
selected features, the discrimination rates of 13 effective 
points were improved, 10 were unchanged, and only 3 were  
 

slightly decreased. This improvement can be noted specially 
for the discrimination rates of p5, which were lower when 
using 8 features. 

Table 5. The Multiple Comparison for Sensors Contribution 

to Discrimination 

 

Sensor Number 
Directions 

1 2 3 4 5 6 7 8 
Total_h 

p1/p2         5 

p1/p3         5 

p1/p4         5 

p1/p5         4 

p2/p3         7 

p2/p4         4 

p2/p5         1 

p3/p4         6 

p3/p5         6 

p4/p5         3 

total_v 8 8 4 4 2 6 9 5  

'pi/pj means the discrimination between pi and pj. 

O: significant difference. X: no significant difference 

 

 Through a similar comparison for the disc_ii, the same 
tendency could be observed. The number of the effective 
points whose discrimination rates were improved, 
unchanged, decreased, is 34, 44 and 6, respectively. This 
clearly denotes the improvement of the discrimination rates 
by selecting appropriately it’s features. 

 Finally, Table 9 shows the effective points frequency of 
appearance on each sensor. 

Table 6. Improved Discrimination Rates when Using the 

Selected 4 Sensors (disc_i) 

 

Distinguish Rate (%) Reaching  

Time  

(%) 

Grasp 

p1 p2 p3 p4 p5 

Used  

Sensor 

100 g1 89 78(56  100 100 78 1,2,7,8 

100 g3 100 100 100 100 78(56) 1,5,6,7 

90 g2 100 89 100 100 78(56) 1,2,7,8 

80 g2 100 100 100 100 78(56) 1,2,7,8 

70 g2 100 89 100 100 78(56) 1,2,7,8 

100 g2 89 78 100 100 78(44) 2,6,7,8 

80 g2 100 78 100 100 78(56) 1,2,6,8 

50 g3 100(56) 100 89 100 89(67) 1,2,6,7 

100 g1 100 78 100 100 89(56) 1,4,5,6 

90 g1 100 78 100 100 89(56) 1,4,5,6 

100 g3 78(67) 78(56) 78 100 78 1,2,5,8 

90 g1 89(67) 78 89 100 78 1,3,6,8 

70 g1 89(44) 100 89 89 89 3,4,6,8 

The figure in the bracket shows the correct rate using 8 features. 
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Table 7. Unchanged Discrimination Rates when Using the 

Selected 4 Sensors (disc_i) 

 

Distinguish Rate (%) Reaching  

Time  

(%) 

Grasp 
p1 p2 p3 p4 p5 

Used  

Sensor 

90 g3 100 100 100 100 78 1,5,6,7 

80 g1 100 78 89 100 78 1,2,3,7 

80 g3 100 100 100 100 89 1,2,6,7 

70 g3 100 100 100 100 78 1,2,6,8 

60 g2 100 89 100 100 78 1,2,7,8 

50 g2 100 89 78 100 89 2,6,7,8 

90 g2 100 100 100 100 100 1,2,7,8 

60 g3 89 78 89 89 78 1,4,6,8 

The figure in the bracket shows the correct rate using 8 features. 

 

Table 8. Decreased Discrimination Rates when Using the 

Selected 4 Sensors for (disc_i) 

 

Distinguish Rate (%) Reaching  

Time 

(%) 
Grasp 

p1 p2 p3 p4 p5 

Used  

Sensor 

70 g3 100 100 100 67(89) 78 1,2,6,7 

40 g3 89 89 100 100 67(89) 1,2,6,8 

30 g3 67(78) 100 89 100 78 1,5,6,8 

The number in the bracket shows the discimination rate using 8 features. 

 

Table 9. Effective Points Frequency of Appearance in Each 

Sensor 

 

Sensor ID 1 2 3 4 5 6 7 8 

Frequency 73 52 14 38 31 42 52 48 

 

4. DISCUSSION 

 The rapid development of light weighted dexterous 
prosthetic hand its needing more research on new data 
mining methods in order to detect dynamical motion 
intention. New techniques and algorithms will allow taking 
full advantage of the many degrees of freedom of these 
artificial limbs, and hopefully will allow the user to acquire 
more natural and intuitive control and manipulation of the 
prosthesis. Different data mining methods have been used to 
extract and predict information from EMG sensors, being 
neural networks the most commonly used [1-3, 12-16]. In 
[17], R. Ashan et al. made a review on the different types of 
classifiers used until this day for EMG extraction for Human 
Computer Interaction applications. They conclude that the 
use of neural networks dominates for these applications, but 
point out also the advantages of other methods. In [15] a 
three-layer neural network, using the Kick Out method, was 
applied. They were able to develop a model which relates the 
motor commands to movement trajectories of the arm. Also,  
 

in [13], a statistical approach was used in order to model the 
arm motions. In this case a multivariate analysis of the EMG 
information approach was used in order to take advantage of 
the correlation of the EMG activities when making arm 
movements. The results of these studies show that it is 
possible to extract arm dynamics information from activities 
of the proximal muscles. Therefore, this results are 
encouraging to go further and try to extract information that 
will allow prediction not only arm, but hand trajectories in 
reaching and grasping tasks. 

 T. Brochier et al., in [14], explore different muscle EMG 
activities in object-specific grasp in Macaque Monkeys, and 
J. Martellon, in [12], reproduced the experiment for humans. 
They were able to classify 3 different grips using pattern 
recognition algorithms, but along the proximal muscles, they 
also used forearm muscle activities, making it difficult to 
determine the contribution of the proximal muscles to the 
recognition. 

 The present study aimed to explore the contribution of 
the EMG signals of the proximal muscles, more specifically 
the around-shoulder muscles, to the activities of the arm-
hand dynamics. This way we can use this information to 
predict the type of grip and arm position, while reaching, in a 
dynamic way. The results showed that it is possible to 
distinguish the final position and the final grip with a simple 
classifier around 80% of the reaching time, suggesting that 
using more complex algorithms this rate could be improved. 
For example, even when reducing the amount of sensors 
used to discriminate the position and grips, the results were 
very promising. Certainly, the classification method used 
was not optimal, since it leaves aside several important 
components and it is too slow for actual applications, but 
it indicates the possibility of using around shoulder 
muscles to predict hand and arms movements in a 
dynamical way. 

 The sensor sites 1, 2, 3, 5 (refer to Fig. 4) were also 
employed in [12, 13, 15]. However, through the comparison, 
it is clear that the muscles: infraspinatus muscle and 
infraspinatus fascia (6), teres major muscle (7), and 
descending fibers of the trapezius muscle (8); also play 
important roles in discriminating arm- hand motions. 

 These findings are of importance to achieve a dynamical 
coupling between the person and the machine. In our 
research group, we are currently trying to achieve this 
coupling by using a close loop control of the artificial limb. 
Therefore, not only an accurate real time intention detection 
of the hand and arm trajectory is needed, but a different 
redundant feedback channels are needed for the user to be 
able to notice whether the prosthetic hand is doing what he 
intends to achieve [18], thus the user can have a dynamical 
correlation of the intention-action coupling of the reaching 
process with the prosthesis. This way we hope to achieve 
body-prosthesis coordination for more natural manipulation 
of the artificial limb when reaching and grasping in daily live 
activities, and to reduce the amount of consciousness 
awareness in the process. 

 Currently, we are in the processes of classifying EMG 
signals from the around-shoulder muscles using a back 
propagation neural network, with impressive results. 
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

 This study shows that it is possible to distinguish 
different arm direction motions and hand grips, using EMG 
signals from the around-shoulder muscles activities when 
reaching and grasping objects. Moreover, not only pure 
shoulder muscles contribute to the discrimination, but other 
proximal muscles contribute as well because the motion 
coordination of whole body. 

 As future approach, other classification algorithms will 
be tested (such as neural networks) in order to achieve real 
time discrimination of the arm-hand motions. As well, 
different types of sensors (such as accelerometers) will be 
used to improve the detection and feature extraction of the 
muscle activities. 
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