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Abstract: The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of 

changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using 

fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell 

issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the 

segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data 

mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised 

learning, including those based on k-means clustering, EM, Otsu’s threshold, and GMAC. Validation measures are 

defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and 

recently published real data. Experimental results demonstrate that k-means, Otsu’s threshold, and GMAC perform 

similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower 

precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods 

need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical 

informatics applications. 
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1. INTRODUCTION 

 Microscopic imaging is nearly ubiquitous in several 
medical informatics disciplines, including but not limited to, 
cancer informatics, neuro-informatics, and clinical decision 
support in ophthalmology. While fluorescence microscopes 
permit the collection of large, high-dimensional cell image 
datasets, their manual processing is inefficient, irrepro-
ducible, time-consuming, and error-prone, prompting the 
design and development of automated, efficient, and robust 
processing to allow analysis for high-throughput applicat-
ions. The sensitive and specific detection of pathological 
changes in cells requires the accurate measurement of 
geometric parameters. Previous research has shown that 
geometric features, such as shape and area, indicate cell 
morphological changes during apoptosis [1]. As a precursor 
to geometric analysis, segmentation is often required in the 
first processing step. Cell image segmentation is challenging 
due to the complex morphological cells, illuminant reflect-
ion, and inherent microscopy noises. The characteristic 
problems include poor contrast between cell gray levels and 
background, a high number of occluding cells in a single 
view, and excess homogeneity in cell images due to irregular 
staining among cells and tissues. 

 Typically, image segmentation algorithms are based on 
local image information, including edge or gradient, level set   
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[2], histogram [3], clusters [4], and prior knowledge [5]. 
These segmentation methods have been broadly implemen-
ted in medical imaging applications [6]. The current 
segmentation algorithms used in cell images include seeded 
watershed [7], Voronoi-based algorithm [8], histogram-
based clustering [9] or threshold [10] and active contour 
[11]. Watershed algorithms can split the connected cells but 
can lead to over-segmentation. Histogram-based image 
segmentation is unparametric and based on unsupervised 
clustering. The histogram is used to approximate the 
probability density distribution of the image intensity. Pixels 
in one image are partitioned into several non-overlapping 
intensity regions. K-means and EM are extensions of 
histogram segmentation. In EM [9], the distribution of image 
intensity is modeled as a random variable, which is 
approximated by a mixture Gaussian model. Due to the lack 
of intensity distribution information in an image, the EM 
model can lead to significant bias. of the EM model is 
computationally efficient and easy to implement, but 
performs poorly in finding the optimal threshold between 
clusters in the histogram. Otsu’s optimal threshold is 
obtained by minimizing intra-class variance and has been 
applied in nucleus segmentation [12]. Level set and active 
contour are applied with arbitrary interaction energy in order 
to split the connected cells in [11]. This method is not 
meaningful for isolated cells and makes the cell 
segmentation dependent on cell sizes. In [8], cells are 
segmented according to the defined metric, the Voronoi 
distance between pixels and seeds. This metric includes the 
information from image edges and inter-pixel distance 
within the image. The parametric active contour and 
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repulsive force are incorporated in [13]. However, this 
metric is not suitable for the segmentation of a large number 
of cells in one image. 

 Unsupervised learning can be adapted and developed for 
nuclei and cell image segmentation due to the inherent 
coherent detection and decomposition challenges in the 
detection and separation of segments. However, it is difficult 
to select a robust and reproducible method due to the lack of 
the comparative evaluation of those algorithms. This 
problem arises partially due to the lack of benchmark data or 
because of manually outlined ground truth. This paucity of 
performance evaluation elevates the difficulty for medical 
scientists to select a suitable segmentation method in medical 
image applications. Sometimes, methods are selected based 
on intuition and experience; e.g., Otsu’s threshold is used 
broadly in nuclei image segmentation. Moreover, no broadly 
acceptable method can address the nuclei and cell image 
segmentation problems in a diverse range of applications 
accurately and robustly. Recently, several synthetic (e.g. 
[14]) and benchmark cellular image data (e.g. [15]) have 
been made publicly available. 

 In this paper, we present and evaluate the performance of 
several unsupervised data mining techniques in cell image 
segmentation. We adapt four distinctive, yet complementary, 
methods for unsupervised learning, including those based on 
k-means clustering, EM, Otsu’s threshold, and GMAC. 
Validation measures are defined to compare and contrast the 
performance of these methods using publicly available data. 
It should be noted that the segmentation algorithms are 
typical representatives of methods based on histogram, 
model, threshold, and active contour. We only focus on 
segmentation methods using low-level image information, 
such as pixel intensity and image gradient. GMAC 
represents both the snake and level set technologies [14]. 
The results presented in this paper can guide domain users to 
select suitable segmentation methods in medical imaging 
applications. 

2. UNSUPERVISED MINING METHODS FOR IMAGE 
SEGMENTATION 

 Let us consider an image I of size r = M  N pixels, 
where each pixel can take L possible grayscale-level values 
in the range [0, L 1]. Let h(x) be the normalized histogram 
of the image I. 

2.1. Notation 

xi Intensity value of pixel i 

h(x) Histogram of the image I, x 0,L 1[ ]  

r Image size in terms of pixel numbers 

Tr I( )  Transformation function of image I 

pj xi ; j( )  j-th probability density function with 
parameter set j  

μ j  Mean of cluster j 

j  Variance of cluster j 

within
2

 

between
2

 

Within-class variance, 

Between-class variance. 

i T( )i=1,2  Probabilities of the two clusters 
separated by threshold T 

f x( )  Image expressed with spatial term x, 
which refers to pixel location 

 (in GMAC) Scalar that controls the balance between 
regularization and data 

 

2.2. K-Means Clustering 

 We use K-means clustering for image segmentation to 
find the optimal threshold, such that the image feature values 
of pixels on one side of the threshold are closer to their 
feature values’ mean than the distance between those feature 
values and the means on the other side of the threshold. This 
method is performed using the histogram of image intensity. 
We assume that the image intensities compose a vector space 
and try to find natural clustering in it. The pixels are 
clustered around centroid ci, which are obtained by 
minimizing the objective function 

ci := argmin dist xi μ j( )( ) .           (1) 

 The centroid for each cluster is iteratively obtained as 
follows, 

μi :=
ci = j{ }xii=1

r

ci = j{ }
i=1

r ,           (2) 

where r is the image size in terms of pixel number, i iterates 

over all intensities, j iterates over all centroids, and μi are the 

centroid intensities. Using intensity value directly in 

microscopic cell image segmentation will not lead to the 

desired segmentation result due to the dynamic ranges, 

which vary in images. We propose a gray-level 

transformation function in the form Tr I( ) = I r  for the above 

algorithm to implement k-means segmentation in cell image 

I, where  is a positive constancy. 

2.3. Expectation Maximization Method 

 The Expectation Maximization (EM) algorithm assumes 
that an image consists of a number of gray-level regions, 
which can be described by parametric data models. When the 
histogram of the gray levels is regarded as an estimate of the 
probability density function, the parameters of the function 
can be estimated for each gray-level region using the 
histogram. The objective of the EM algorithm is to find the 
maximum likelihood estimates of the parameters in the 
function. Correspondingly, EM consists of two steps: 
expectation and maximization. Using the same notations in 
Section 2.1, the mixture of probability density functions is as 
follows, 

p xi( ) = j p j xi ; j( )
j=1

K

.           (3) 

 In the above, j is the proportion of the j-th density 

function in the mixture model, and j p j xi ; j( )
j=1

K

is the j-th 
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density function with parameter set j . The Gaussian 

mixture model (GMM) is the most employed in practice, and 

has two parameters, mean μ j and covariance j , such that 

j = μ j , j( ) . We consider GMM in our research. If we 

assume that j
t
 is the estimated value of 

parameters j = μ j , j( ) , obtained at the t-th step, then 

j
t+1

can be obtained iteratively. The EM algorithm 

framework follows, 

 j
t+1

=
1

r ij
t

i=1

r

,          (4) 

μ j
t+1

=
ij
t xi

i=1

r

ij
t

i=1

r ,           (5) 

j
t+1

=
ij
t xi μ j

t( ) xi μ j
t( )
T

i=1

r

ij
t

i=1

r ,         (6) 

ij
t
=

j
t p xi ;μ j

t , j
t( )

j
t p xi ;μ j

t , j
t( )

j=1

K .           (7) 

 These equations state that the estimated parameters of the 

density function are updated according to the weighted 

average of the pixel values where the weights are obtained 

from the E step for this partition. The EM cycle starts at an 

initial setting of j
0
= μ j

0 , j
0( )  and updates the parameters 

using Equations ((4)-(7)) iteratively. The EM algorithm 

converges until its estimated parameters cannot change. 

Then, the final parameters, j
EM

= μ j
EM , j

EM( ) , are applied in 

image segmentation by labeling pixels using Maximum 

Likelihood (ML). Pixel xi is labeled using the following 

function, 

argmax
j

exp 0.5 xi μ j
EM( ) j

EM xi μ j
EM( )( )

j
EM 0.5

.         

(8) 

2.4. Threshold-Based Segmentation 

 Threshold segmentation is a method that separates an 
image into a number of meaningful regions through the 
selected threshold values. If the image is a grey image, 
thresholds are integers in the range of [0, L-1], where L-1 is 
the maximum intensity value. Normally, this method is used 
to segment an image into two regions: background and 
object, with one threshold. The following is the equation for 
threshold segmentation: 

IB x, y( ) =
1, if I x, y( ) > T

0, if I x, y( ) T .
.         (9) 

 In the above equation, IB is the segmentation resultant. 

The most famous threshold method was proposed by Otsu in 

[12]. The Otsu’s method finds the optimal threshold T 

among all the intensity values from 0 to L-1 and chooses the 

value that produces the minimum within-class variance 

within
2

 as the optimal threshold value. Consequently, the 

optimal value of TOpt is obtained through the following 

optimal computation, 

within
2 Topt( ) = min

0 T L 1
within
2 T( ) .        (10) 

 In the whole image, variances 2 are made up of two 

parts:
2
= within

2 T( ) + between
2 T( ) . Otsu shows that 

min
0 T L 1

within
2 T( )  is the same as max

0 T L 1
between
2 T( ) . 

Therefore, the optimal value of T can also be obtained 

through the following alternative optimization process: 

between
2 Topt( ) = max

0 T L 1
between
2 T( ) .        (11) 

 Equation (11) is often used to find the optimal threshold 

value for simple calculation. Theoretically, between
2 T( ) is 

expressed in the following, 

between
2 Topt( ) = 1 T( ) 2 T( ) μ1 T( ) μ2 T( )( )

2

      
(12) 

where i T( ) = h i( )
i=1

t

are the probabilities of the two 

clusters separated by threshold T, and μi T( )i=1,2 are the 

cluster means. i T( )i=1,2 and μi T( )i=1,2 can be estimated 

using histogram h(x) as follows, 

1 T( ) = h i( )
i=1

T

         

 (13) 

2 T( ) = h i( )
i=T +1

L 1

,          (14) 

μ1 T( ) =
i h i( )

i=0

T

1

,          (15) 

μ2 T( ) =
i h i( )

i=T +1

L 1

2

.         (16) 

 Using the above Equations (12)-(16), the optimal 
threshold T is exhaustively searched among [0, L-1] to meet 
the objective according to Equation (11). 

2.5. Global Minimization of the Active Contour Model 
(GMAC) 

 We choose the global minimization of the active contour 
model (GMAC) [16] to analyze the implementation of active 
contour in cell-image segmentation. This method has a 
simple initialization and fast computation, and it can avoid 
being stuck at an undesired local minima. GMAC is based 
on Mumford and Shah’s (MS) function and the Chan and 
Vese’s model of active contours without edges (ACWE) 
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[17]. GMAC improves ACWE by using weighted total 
variation and dual formulation of the TV form, which 
preserves the advantage of ACWE. We define GMAC and 
related concepts below. 

min
μ ,

EGMAC μ,( ) := TVg μ( ) +
1

2
μ v

L2
2

+ r1 x,c1,c2( )μ + v( )dx
,       (17) 

where r1 x,c1,c2( ) = c1 f x( )( )
2

c2 f x( )( )
2( )dx , f x( ) is 

the given image, and c1 and c2 are constants calculated for 

partitioning in iteration; e.g., if μ* = argminE2 μ,v,c1,c2[ ] , 

c1 and c2 are the means of pixels in two partitions and can be 

obtained using equations, > 0 is chosen small enough, 

> 0  is a parameter controlling scale related to the scale of 

observation of solution, and  is constant. 

TVg μ( ) = g x( ) μ dx          (18) 

where g(x) is an edge indication function which gives a link 
between snake model and region terms. The minimization 
Equation (17) is solved using the following equations 
iteratively until convergence: 

c1 =

f x( )
r

v x( )dx

v x( )dx
r

,          (19) 

c2 =

f x( ) 1 v x( )( )
r

dx

1 v x( )( )dx
r

,         (20) 

pn+1 =
pn + t divpn f v( ) /( )

1+
t

g x( )
divpn f v( ) /( )

,       (21) 

μ = v divp ,          (22) 

v x( ) = min max μ x( ) r1 x,c1,c2( ),0{ },1{ }       (23) 

 In Equation (21), t is the time step. 

3. EXPERIMENTAL RESULTS 

 In this section, we present the experimental results from 
the segmentation of three types of fluorescent cellular 
images: synthetic cell images, nuclei images with ground 
truth, and brain cell microscopic images. The first two types 
of image data are used to evaluate the quantitative 
performance of the four segmentation methods and to 
compare the results to the ground truth. The brain cell 
images are segmented with qualitative performance analysis 
due to the lack of ground truth. 

3.1. Quantitative Measure 

 We use the traditional precision, recall, and F-score as 
the quantitative measures in pixel level. These measures are 
standard techniques used to evaluate the quality of the 
segmentation results against the ground truth. These 

measures quantify discrepancy between segmentation results 
and binary ground truth mask as follows: 

 

precision =
# SR GT( )

# SR
,         (24) 

 

recall =
# SR GT( )
#GT

,         (25) 

F score =
2 precision recall( )
precision + recall

,        (26) 

where SR is the segmentation result and GT is the ground 
truth of images. The symbol ‘#’ refers to the pixel numbers 
in the sets. 

3.1.1. Segmentation of Synthetic Data 

 Benchmark sets of synthetic cell population images with 
ground truth are simulated by P. Ruusuvuori in [18]. We 
select the second benchmark set which consists of multi-
channel cell images because we do not have suitable real cell 
images with ground truth for evaluation. In this set, nuclei, 
cytoplasm, and subcellular components have been simulated 
by tuning parameters such as size, location, randomness of 
shape, and other background or fluorescence parameters (see 
details in [18]). The image sets are divided into two subsets: 
high quality and low quality (examples shown in Fig. 1), 
each consisting of 20 cell images. The second set has 
overlapping cells and a noisy background. Each image 
contains 50 cells. As each simulated image has a 
corresponding binary mask as ground truth, binary 
operations can easily calculate the quantitative measure 
defined above. 

a)          b) 

  

c)            d) 

 

Fig. (1). Synthetic cell images a) (low quality) with noisy 

background and overlapping cells, b) (high quality) without noise 

in background and overlapping cells, c) ground truth of image a, d) 

ground truth of image b. 

 Fig. (2) shows the segmentation result of four methods 
for the low quality synthetic image data in Fig. (1a). 
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Segmented images in Fig. (2) are compared and evaluated 
using the ground truth image in Fig. (1c). Fig. (3) shows the 
segmentation result of four methods for the high quality 
synthetic image data in Fig. (1b). Segmented images in Fig. 
(3) are compared and evaluated using the ground truth image 
in Fig. (1d). 

   a)             b) 

  

c)            d) 

  

Fig. (2). Segmentation result for synthetic cell images of low 

quality in Fig. (1a). a) K-means result, b) EM result, c) Otsu’s 

result, d) GMAC result. 

   a)          b) 

  

   c)           d) 

  

Fig. (3). Segmentation result for synthetic cell image of high 

quality in Fig. (1b). a) K-means result, b) EM result, c) Otsu’s 

result, d) GMAC result. 

 Figs. (4-6) and Table 1 are the quality measure values for 
the segmentation results using subcellular images with low 
quality. Figs. (7-9) and Table 2 are the quality measure 

values for the segmentation results using subcellular images 
with high quality. 

 We observe that the segmentation results of lower quality 
images, with noisier backgrounds and overlapping cells, 
have worse results than those in high quality images. K-
means, Otsu’s threshold and GMAC obtain similar 
segmentation quality in both sets of images, measured by F-
score, precision, and recall. Their performance is more 
robust against noises than EM. Moreover, the EM algorithm 
has lower precision, while keeping much higher recall 
values, especially for cell images with noisy backgrounds. 
To further understand these phenomena, real nucleus images 
are segmented in the next section. 

Table 1. Average Measures of the Segmentation Methods 

Applied on Low Quality Synthetic Cell Images 

 

 F-Score Precision Recall 

K-Means 0.9350 0.9530 0.9180 

EM 0.5331 0.3821 0.9915 

Otsu’s 0.9269 0.9295 0.9259 

GMAC 0.9445 0.9781 0.9133 

 

Table 2. Average Measures of the Segmentation Methods 

Applied on High Quality Synthetic Cell Images 

 

 F-Score Precision Recall 

K-Means 0.9745 0.9726 0.9765 

EM 0.9040 0.8267 0.9986 

Otsu’s 0.9738 0.9798 0.9679 

GMAC 0.9703 0.9874 0.9538 

 

Fig. (4). F-score of the four methods applied on low quality 

simulated cell images. 

3.1.2. Segmentation of Nucleus Images 

 Sixteen nucleus images were hand-outlined by an expert 
in the CellProfiler project [8, 15]. We use these images to 
evaluate the segmentation algorithms quantitatively. We 
obtain similar results, as shown in Figs. (10-13), as those we 
obtained in Section 3.1.1. We observe in Table 3 that EM 
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maintains higher recall and lower precision values, even if its 
F-score values are as high as the other segmentation methods 
in several images. From Fig. (10d), we can see that the EM 
under-segments nucleus images strongly, which induces the 
high recall values. This under-segmentation is due to the 
presumed dual Gaussian mixture models in the calculation of 
EM. One model represents background, and the other refers 
to objects. When objects have much smaller grayness 
regions than background (as shown in Fig. 10a), the dual 
Gaussian mixture model leads to under-segmentation. 

Fig. (5). Precision of the four methods applied on low quality 

simulated cell images. 

Fig. (6). Recall of the four methods applied on low quality 

simulated cell images. 

Fig. (7). F-score of the four methods applied on high quality 

simulated cell images. 

Fig. (8). Precision of the four methods applied on high quality 

simulated cell images. 

Fig. (9). Recall of the four methods applied on high quality 

simulated cell images. 

 Otsu’s method also has drawbacks. Although it performs 
well for nucleus segmentations, due to its fastness and 
simplicity in application, it cannot be proven the best 
segmentation method for nucleus images. As shown in 
Section 3.1.1, Otsu’s method shows stable precision and 
recall values even when it encounters arbitrarily defined 
noises. However, in the experiment using real nucleus 
images, the Otsu’s method recall value is significantly lower 
than its precision values, which means it has over-segmented 
the image. 

 GMAC is more robust and stable than the Otsu’s method 
in our experiments. GMAC depends on both image intensity 
distribution information (region) and gradient (edge) 
information. When the contrast between background and 
cells becomes light, and cells are hidden by noises, the 
combination of gradient and intensity information records 
better information than intensity alone does, e.g. in Otsu’s. 
In the k-means method, we choose k=2 to cluster some 
objects into one group and other segments into a background 
group. K-means performs the best in almost all experiments. 
Its good performance is due to the application of power 
function for the compensation of intensity transformation 
brought in by the microscopic device. In this research, we 
assume this power function is known, and we obtain it by 
choosing the optimal k-means result (smallest error between 
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k-means segmentation result and ground truth). It 
demonstrates that the k-means method can obtain robust and 
precise segmentation results with the aid of power function. 

                      a)             b) 

  

               c)             d) 

  

               e)             f) 

  

Fig. (10). Segmentation of nucleus images: a) Nucleus images, b) 

Ground truth, c) K-means result, d) EM result, e) Otsu’s result, and 

f) GMAC result. 

Table 3. Average Quality Measures of the Segmentation 

Methods on Nucleus Images 

 

  F-Score Precision Recall 

K-Means 0.8714 0.8766 0.8668 

EM 0.7473 0.6131 0.9664 

Otsu’s 0.7976 0.9475 0.6910 

GMAC 0.7880 0.8880 0.7148 

 

3.2. Quality Measure of Segmentation of Brian Cell 
Images 

 In this evaluative study, brain cell images were captured 

using a computer controlled Microscope (Leica DMI 6000 

Digital). The cell images are of a normal healthy astrocytes 

cell, which has been stained with Calcein AM, a vital dye 

that stains only living cells. The test images are ↔1040 1392  

pixels with 8-bit gray-levels. As no manual outlining has 

been performed on the images, the performance of 

segmentation methods is qualitatively evaluated. 

Fig. (11). F-score of the four methods applied on nucleus images. 

Fig. (12). Precision of the four methods applied on nucleus images. 

Fig. (13). Recall of the four methods applied on nucleus images. 

 As shown in Fig. (14a), brain cell images are dark, and 
cell contours are blurred. The segmentation results of k-
means, Otsu’s, and GMAC (Fig. 14b, d, e) seem to be 
washed out. Using the nucleus, light areas, we can identify 
the existing cells in the image. The segmentation result of 
GMM EM (Fig. 14c) is still under-segmented. In Fig. (15), 
we can see that the background, denoted by the annotated 
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line marked by ‘*’, has a narrow estimated intensity 
distribution while cells distribute in a wider intensity levels, 
denoted by the other annotated line marked by ‘+’. This 
presentation using standard Gaussian distribution leads to 
errors in the estimate of probability distribution. As shown in 
Fig. (16), the individual intensity distributions are summed 
to obtain the mixed Gaussian distribution, which is presented 
by the annotated line marked by square. The errors in 
estimation are accumulated in the sum procedure, which can 
be presented by the discrepancy between the areas covered 
by the estimated distribution and the true intensity 
distribution denoted by the annotated line marked by 
triangle. The other three segmentation results have cells split 
with the nucleus, although several cells are over-segmented. 
This over-segmentation can be explained as that these 
techniques consider image intensity and texture information 
in the segmentation process, while the spatial relation or 
some connection between pixels is missed. Moreover, 
compared to the synthetic images in Section 3.1.1, real cell 
images are more complex and difficult to segment. 

 

Fig. (15). Estimated intensity distribution of image in Fig. (14a) 

using GMM EM model. 

4. CONCLUSION 

 We present four unsupervised mining methods in cell 
image segmentation. The four methods are compared and 
contrasted to showcase efficacy strengths, as well as 
embedded limitations. While no single method outperforms 
the others in all tests, this analysis is expected to assist image 
scientists in improving these techniques for the more 

complex cell image segmentation problems encountered in 
related disciplines. 

 

Fig. (16). The ground truth and estimation of the intensity 

distribution of image in Fig. (14a). 

 The methods are evaluated both quantitatively and 
qualitatively using synthetic simulated and real images. EM 
performs weakly in both cases due to its presumed Gaussian 
model. It needs a better model assumption in microscopic 
imaging if applied in cell image segmentation. Otsu’s 
method cannot always guarantee a good segmentation result, 
especially when the contrast between the background and 
cells is poor. GMAC integrates intensity and gradient 
information and keeps a stable performance in our experi-
ments. K-means can perform robust segmentation with the 
aid of power function. In future work, spatial information 
between pixels must be involved to improve the performance 
of those techniques. The knowledge about the cell images, 
such as inclusion of the power distribution function will be 
incorporated in segmentation. 
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